wav2vec2-base-vi-vivos

This model is a fine-tuned version of nguyenvulebinh/wav2vec2-base-vi on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3990
  • Wer: 0.2339

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Wer
2.2335 1.37 500 1.9337 0.9589
2.0861 2.74 1000 1.6892 0.9078
1.8044 4.11 1500 1.3953 0.7989
1.5782 5.48 2000 1.1773 0.7221
1.3843 6.85 2500 1.0011 0.6243
1.2181 8.22 3000 0.8656 0.5361
1.1115 9.59 3500 0.7775 0.4933
0.9948 10.96 4000 0.6933 0.4286
0.9307 12.33 4500 0.6314 0.3959
0.8529 13.7 5000 0.5832 0.3560
0.8094 15.07 5500 0.5446 0.3292
0.7517 16.44 6000 0.5156 0.3064
0.701 17.81 6500 0.4899 0.2907
0.6753 19.18 7000 0.4668 0.2742
0.6621 20.55 7500 0.4528 0.2621
0.6455 21.92 8000 0.4345 0.2564
0.6159 23.29 8500 0.4258 0.2475
0.596 24.66 9000 0.4143 0.2435
0.5833 26.03 9500 0.4063 0.2387
0.5899 27.4 10000 0.4029 0.2357
0.5729 28.77 10500 0.3990 0.2339

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.4
  • Tokenizers 0.13.3
Downloads last month
6
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for hieplpvip/wav2vec2-base-vi-vivos

Finetuned
(10)
this model