T5_fine_tune

This model is a fine-tuned version of VietAI/vit5-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0000
  • Score: 42.9309
  • Counts: [2102, 1955, 1808, 1661]
  • Totals: [2107, 1960, 1813, 1666]
  • Precisions: [99.76269577598481, 99.74489795918367, 99.72421400992829, 99.69987995198079]
  • Bp: 0.4305
  • Sys Len: 2107
  • Ref Len: 3883

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Score Counts Totals Precisions Bp Sys Len Ref Len
No log 1.0 71 0.3075 34.0719 [1898, 1601, 1364, 1147] [2129, 1982, 1835, 1688] [89.14983560356976, 80.77699293642785, 74.33242506811989, 67.95023696682465] 0.4387 2129 3883
No log 2.0 142 0.1994 36.2148 [1925, 1676, 1483, 1299] [2111, 1964, 1817, 1670] [91.18900994789199, 85.33604887983707, 81.61805173362686, 77.78443113772455] 0.4320 2111 3883
No log 3.0 213 0.1269 39.1074 [2013, 1802, 1615, 1433] [2116, 1969, 1822, 1675] [95.13232514177693, 91.5185373285932, 88.63885839736554, 85.55223880597015] 0.4338 2116 3883
No log 4.0 284 0.0988 41.3658 [2074, 1879, 1696, 1517] [2152, 2005, 1858, 1711] [96.37546468401487, 93.71571072319202, 91.28094725511302, 88.66160140268849] 0.4474 2152 3883
No log 5.0 355 0.0777 41.4395 [2069, 1893, 1724, 1557] [2121, 1974, 1827, 1680] [97.54832626119754, 95.8966565349544, 94.36234263820471, 92.67857142857143] 0.4357 2121 3883
No log 6.0 426 0.0626 41.6053 [2074, 1902, 1742, 1582] [2108, 1961, 1814, 1667] [98.38709677419355, 96.99133095359511, 96.03087100330761, 94.90101979604079] 0.4308 2108 3883
No log 7.0 497 0.0534 42.1461 [2087, 1925, 1763, 1601] [2115, 1968, 1821, 1674] [98.67612293144208, 97.8150406504065, 96.81493684788578, 95.63918757467144] 0.4335 2115 3883
0.3652 8.0 568 0.0380 42.5312 [2096, 1936, 1781, 1625] [2116, 1969, 1822, 1675] [99.05482041587902, 98.32402234636872, 97.74972557628979, 97.01492537313433] 0.4338 2116 3883
0.3652 9.0 639 0.0361 42.3028 [2088, 1929, 1773, 1616] [2113, 1966, 1819, 1672] [98.81684808329389, 98.11800610376399, 97.47113798790544, 96.65071770334929] 0.4327 2113 3883
0.3652 10.0 710 0.0299 42.5382 [2097, 1942, 1789, 1635] [2106, 1959, 1812, 1665] [99.57264957264957, 99.13221031138336, 98.73068432671081, 98.1981981981982] 0.4301 2106 3883
0.3652 11.0 781 0.0319 42.5551 [2097, 1944, 1790, 1635] [2106, 1959, 1812, 1665] [99.57264957264957, 99.23430321592649, 98.78587196467991, 98.1981981981982] 0.4301 2106 3883
0.3652 12.0 852 0.0193 42.6258 [2095, 1942, 1790, 1638] [2111, 1964, 1817, 1670] [99.24206537186167, 98.87983706720978, 98.51403412217941, 98.08383233532935] 0.4320 2111 3883
0.3652 13.0 923 0.0178 42.7370 [2099, 1949, 1799, 1649] [2106, 1959, 1812, 1665] [99.667616334283, 99.48953547728433, 99.28256070640177, 99.03903903903904] 0.4301 2106 3883
0.3652 14.0 994 0.0156 42.5704 [2094, 1940, 1788, 1636] [2110, 1963, 1816, 1669] [99.24170616113744, 98.82832399388691, 98.45814977973568, 98.02276812462553] 0.4316 2110 3883
0.0716 15.0 1065 0.0120 42.7573 [2099, 1949, 1797, 1645] [2110, 1963, 1816, 1669] [99.47867298578198, 99.28680590932247, 98.95374449339207, 98.56201318154584] 0.4316 2110 3883
0.0716 16.0 1136 0.0094 42.8327 [2100, 1950, 1800, 1650] [2111, 1964, 1817, 1670] [99.4789199431549, 99.28716904276986, 99.06439185470556, 98.80239520958084] 0.4320 2111 3883
0.0716 17.0 1207 0.0064 42.7937 [2097, 1949, 1801, 1653] [2108, 1961, 1814, 1667] [99.47817836812145, 99.38806731259561, 99.28335170893054, 99.16016796640672] 0.4308 2108 3883
0.0716 18.0 1278 0.0077 42.9044 [2102, 1954, 1805, 1656] [2109, 1962, 1815, 1668] [99.66808914177335, 99.59225280326197, 99.44903581267218, 99.28057553956835] 0.4312 2109 3883
0.0716 19.0 1349 0.0073 42.9494 [2104, 1957, 1807, 1657] [2109, 1962, 1815, 1668] [99.76292081555239, 99.74515800203874, 99.55922865013774, 99.34052757793765] 0.4312 2109 3883
0.0716 20.0 1420 0.0071 42.9063 [2100, 1952, 1804, 1656] [2111, 1964, 1817, 1670] [99.4789199431549, 99.38900203665987, 99.28453494771601, 99.16167664670658] 0.4320 2111 3883
0.0716 21.0 1491 0.0031 42.9309 [2102, 1955, 1808, 1661] [2107, 1960, 1813, 1666] [99.76269577598481, 99.74489795918367, 99.72421400992829, 99.69987995198079] 0.4305 2107 3883
0.032 22.0 1562 0.0076 42.8573 [2102, 1953, 1804, 1655] [2107, 1960, 1813, 1666] [99.76269577598481, 99.64285714285714, 99.50358521787093, 99.33973589435774] 0.4305 2107 3883
0.032 23.0 1633 0.0033 42.8941 [2102, 1954, 1806, 1658] [2107, 1960, 1813, 1666] [99.76269577598481, 99.6938775510204, 99.61389961389962, 99.51980792316927] 0.4305 2107 3883
0.032 24.0 1704 0.0016 42.8573 [2102, 1953, 1804, 1655] [2107, 1960, 1813, 1666] [99.76269577598481, 99.64285714285714, 99.50358521787093, 99.33973589435774] 0.4305 2107 3883
0.032 25.0 1775 0.0029 42.9087 [2102, 1954, 1806, 1658] [2108, 1961, 1814, 1667] [99.71537001897534, 99.64303926568077, 99.55898566703418, 99.46010797840432] 0.4308 2108 3883
0.032 26.0 1846 0.0030 42.9309 [2102, 1955, 1808, 1661] [2107, 1960, 1813, 1666] [99.76269577598481, 99.74489795918367, 99.72421400992829, 99.69987995198079] 0.4305 2107 3883
0.032 27.0 1917 0.0021 42.9309 [2102, 1955, 1808, 1661] [2107, 1960, 1813, 1666] [99.76269577598481, 99.74489795918367, 99.72421400992829, 99.69987995198079] 0.4305 2107 3883
0.032 28.0 1988 0.0014 42.9496 [2103, 1956, 1808, 1660] [2108, 1961, 1814, 1667] [99.76280834914611, 99.74502804691484, 99.66923925027564, 99.58008398320337] 0.4308 2108 3883
0.0174 29.0 2059 0.0009 42.9309 [2102, 1955, 1808, 1661] [2107, 1960, 1813, 1666] [99.76269577598481, 99.74489795918367, 99.72421400992829, 99.69987995198079] 0.4305 2107 3883
0.0174 30.0 2130 0.0009 42.9309 [2102, 1955, 1808, 1661] [2107, 1960, 1813, 1666] [99.76269577598481, 99.74489795918367, 99.72421400992829, 99.69987995198079] 0.4305 2107 3883
0.0174 31.0 2201 0.0007 42.9309 [2102, 1955, 1808, 1661] [2107, 1960, 1813, 1666] [99.76269577598481, 99.74489795918367, 99.72421400992829, 99.69987995198079] 0.4305 2107 3883
0.0174 32.0 2272 0.0011 42.9309 [2102, 1955, 1808, 1661] [2107, 1960, 1813, 1666] [99.76269577598481, 99.74489795918367, 99.72421400992829, 99.69987995198079] 0.4305 2107 3883
0.0174 33.0 2343 0.0024 42.9309 [2102, 1955, 1808, 1661] [2107, 1960, 1813, 1666] [99.76269577598481, 99.74489795918367, 99.72421400992829, 99.69987995198079] 0.4305 2107 3883
0.0174 34.0 2414 0.0022 42.9309 [2102, 1955, 1808, 1661] [2107, 1960, 1813, 1666] [99.76269577598481, 99.74489795918367, 99.72421400992829, 99.69987995198079] 0.4305 2107 3883
0.0174 35.0 2485 0.0006 42.9309 [2102, 1955, 1808, 1661] [2107, 1960, 1813, 1666] [99.76269577598481, 99.74489795918367, 99.72421400992829, 99.69987995198079] 0.4305 2107 3883
0.0109 36.0 2556 0.0003 42.9309 [2102, 1955, 1808, 1661] [2107, 1960, 1813, 1666] [99.76269577598481, 99.74489795918367, 99.72421400992829, 99.69987995198079] 0.4305 2107 3883
0.0109 37.0 2627 0.0001 42.9309 [2102, 1955, 1808, 1661] [2107, 1960, 1813, 1666] [99.76269577598481, 99.74489795918367, 99.72421400992829, 99.69987995198079] 0.4305 2107 3883
0.0109 38.0 2698 0.0005 42.9309 [2102, 1955, 1808, 1661] [2107, 1960, 1813, 1666] [99.76269577598481, 99.74489795918367, 99.72421400992829, 99.69987995198079] 0.4305 2107 3883
0.0109 39.0 2769 0.0003 42.9309 [2102, 1955, 1808, 1661] [2107, 1960, 1813, 1666] [99.76269577598481, 99.74489795918367, 99.72421400992829, 99.69987995198079] 0.4305 2107 3883
0.0109 40.0 2840 0.0012 42.9496 [2103, 1956, 1808, 1660] [2108, 1961, 1814, 1667] [99.76280834914611, 99.74502804691484, 99.66923925027564, 99.58008398320337] 0.4308 2108 3883
0.0109 41.0 2911 0.0002 42.9309 [2102, 1955, 1808, 1661] [2107, 1960, 1813, 1666] [99.76269577598481, 99.74489795918367, 99.72421400992829, 99.69987995198079] 0.4305 2107 3883
0.0109 42.0 2982 0.0003 42.9309 [2102, 1955, 1808, 1661] [2107, 1960, 1813, 1666] [99.76269577598481, 99.74489795918367, 99.72421400992829, 99.69987995198079] 0.4305 2107 3883
0.0073 43.0 3053 0.0001 42.9309 [2102, 1955, 1808, 1661] [2107, 1960, 1813, 1666] [99.76269577598481, 99.74489795918367, 99.72421400992829, 99.69987995198079] 0.4305 2107 3883
0.0073 44.0 3124 0.0000 42.9309 [2102, 1955, 1808, 1661] [2107, 1960, 1813, 1666] [99.76269577598481, 99.74489795918367, 99.72421400992829, 99.69987995198079] 0.4305 2107 3883
0.0073 45.0 3195 0.0001 42.9309 [2102, 1955, 1808, 1661] [2107, 1960, 1813, 1666] [99.76269577598481, 99.74489795918367, 99.72421400992829, 99.69987995198079] 0.4305 2107 3883
0.0073 46.0 3266 0.0000 42.9309 [2102, 1955, 1808, 1661] [2107, 1960, 1813, 1666] [99.76269577598481, 99.74489795918367, 99.72421400992829, 99.69987995198079] 0.4305 2107 3883
0.0073 47.0 3337 0.0000 42.9309 [2102, 1955, 1808, 1661] [2107, 1960, 1813, 1666] [99.76269577598481, 99.74489795918367, 99.72421400992829, 99.69987995198079] 0.4305 2107 3883
0.0073 48.0 3408 0.0000 42.9309 [2102, 1955, 1808, 1661] [2107, 1960, 1813, 1666] [99.76269577598481, 99.74489795918367, 99.72421400992829, 99.69987995198079] 0.4305 2107 3883
0.0073 49.0 3479 0.0000 42.9309 [2102, 1955, 1808, 1661] [2107, 1960, 1813, 1666] [99.76269577598481, 99.74489795918367, 99.72421400992829, 99.69987995198079] 0.4305 2107 3883
0.0047 50.0 3550 0.0000 42.9309 [2102, 1955, 1808, 1661] [2107, 1960, 1813, 1666] [99.76269577598481, 99.74489795918367, 99.72421400992829, 99.69987995198079] 0.4305 2107 3883

Framework versions

  • Transformers 4.36.2
  • Pytorch 2.0.0
  • Datasets 2.1.0
  • Tokenizers 0.15.0
Downloads last month
6
Safetensors
Model size
226M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for hieungo1410/T5_fine_tune

Base model

VietAI/vit5-base
Finetuned
(48)
this model