A bilingual instruction-tuned LoRA model of https://huggingface.co/baichuan-inc/baichuan-7B
- Instruction-following datasets used: alpaca, alpaca-zh, codealpaca
- Training framework: https://github.com/hiyouga/LLaMA-Factory
Please follow the baichuan-7B License to use this model.
Usage:
from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer
tokenizer = AutoTokenizer.from_pretrained("hiyouga/baichuan-7b-sft", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("hiyouga/baichuan-7b-sft", trust_remote_code=True).cuda()
streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
query = "晚上睡不着怎么办"
template = (
"A chat between a curious user and an artificial intelligence assistant. "
"The assistant gives helpful, detailed, and polite answers to the user's questions.\n"
"Human: {}\nAssistant: "
)
inputs = tokenizer([template.format(query)], return_tensors="pt")
inputs = inputs.to("cuda")
generate_ids = model.generate(**inputs, max_new_tokens=256, streamer=streamer)
You could also alternatively launch a CLI demo by using the script in https://github.com/hiyouga/LLaMA-Factory
python src/cli_demo.py --template default --model_name_or_path hiyouga/baichuan-7b-sft
You could reproduce our results with the following scripts using LLaMA-Factory:
CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
--stage sft \
--model_name_or_path baichuan-inc/baichuan-7B \
--do_train \
--dataset alpaca_gpt4_en,alpaca_gpt4_zh,codealpaca \
--template default \
--finetuning_type lora \
--lora_rank 16 \
--lora_target all \
--output_dir baichuan_lora \
--overwrite_cache \
--per_device_train_batch_size 8 \
--per_device_eval_batch_size 8 \
--gradient_accumulation_steps 8 \
--preprocessing_num_workers 16 \
--lr_scheduler_type cosine \
--logging_steps 10 \
--save_steps 100 \
--eval_steps 100 \
--learning_rate 5e-5 \
--max_grad_norm 0.5 \
--num_train_epochs 2.0 \
--val_size 0.01 \
--evaluation_strategy steps \
--load_best_model_at_end \
--plot_loss \
--fp16
- Downloads last month
- 18