metadata
license: apache-2.0
base_model: microsoft/beit-base-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: hushem_1x_beit_base_adamax_00001_fold5
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: test
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.8048780487804879
hushem_1x_beit_base_adamax_00001_fold5
This model is a fine-tuned version of microsoft/beit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.5012
- Accuracy: 0.8049
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 1.0 | 6 | 1.3123 | 0.3415 |
1.3417 | 2.0 | 12 | 1.1955 | 0.5610 |
1.3417 | 3.0 | 18 | 1.0858 | 0.6098 |
0.9733 | 4.0 | 24 | 0.9881 | 0.6098 |
0.7755 | 5.0 | 30 | 0.9019 | 0.6829 |
0.7755 | 6.0 | 36 | 0.8266 | 0.7073 |
0.5866 | 7.0 | 42 | 0.7789 | 0.7073 |
0.5866 | 8.0 | 48 | 0.7323 | 0.7561 |
0.4247 | 9.0 | 54 | 0.6965 | 0.7805 |
0.3366 | 10.0 | 60 | 0.6709 | 0.8049 |
0.3366 | 11.0 | 66 | 0.6414 | 0.8049 |
0.2406 | 12.0 | 72 | 0.6309 | 0.8049 |
0.2406 | 13.0 | 78 | 0.6283 | 0.8049 |
0.1807 | 14.0 | 84 | 0.5831 | 0.7805 |
0.1504 | 15.0 | 90 | 0.5587 | 0.8049 |
0.1504 | 16.0 | 96 | 0.5622 | 0.8049 |
0.1175 | 17.0 | 102 | 0.5998 | 0.8049 |
0.1175 | 18.0 | 108 | 0.5569 | 0.8049 |
0.1107 | 19.0 | 114 | 0.5178 | 0.7805 |
0.0834 | 20.0 | 120 | 0.5243 | 0.7805 |
0.0834 | 21.0 | 126 | 0.5491 | 0.8293 |
0.0685 | 22.0 | 132 | 0.5414 | 0.8049 |
0.0685 | 23.0 | 138 | 0.5016 | 0.8049 |
0.0622 | 24.0 | 144 | 0.5127 | 0.8049 |
0.0553 | 25.0 | 150 | 0.5123 | 0.8049 |
0.0553 | 26.0 | 156 | 0.5115 | 0.8293 |
0.0606 | 27.0 | 162 | 0.5050 | 0.8293 |
0.0606 | 28.0 | 168 | 0.4920 | 0.8293 |
0.0617 | 29.0 | 174 | 0.4931 | 0.8049 |
0.042 | 30.0 | 180 | 0.5002 | 0.8049 |
0.042 | 31.0 | 186 | 0.5113 | 0.8049 |
0.0437 | 32.0 | 192 | 0.5113 | 0.8049 |
0.0437 | 33.0 | 198 | 0.5177 | 0.8049 |
0.0387 | 34.0 | 204 | 0.5166 | 0.8049 |
0.0462 | 35.0 | 210 | 0.5121 | 0.8049 |
0.0462 | 36.0 | 216 | 0.4996 | 0.8049 |
0.0301 | 37.0 | 222 | 0.4928 | 0.8049 |
0.0301 | 38.0 | 228 | 0.4955 | 0.8049 |
0.0363 | 39.0 | 234 | 0.4997 | 0.8049 |
0.0291 | 40.0 | 240 | 0.5021 | 0.8049 |
0.0291 | 41.0 | 246 | 0.5012 | 0.8049 |
0.0319 | 42.0 | 252 | 0.5012 | 0.8049 |
0.0319 | 43.0 | 258 | 0.5012 | 0.8049 |
0.0305 | 44.0 | 264 | 0.5012 | 0.8049 |
0.0298 | 45.0 | 270 | 0.5012 | 0.8049 |
0.0298 | 46.0 | 276 | 0.5012 | 0.8049 |
0.0437 | 47.0 | 282 | 0.5012 | 0.8049 |
0.0437 | 48.0 | 288 | 0.5012 | 0.8049 |
0.03 | 49.0 | 294 | 0.5012 | 0.8049 |
0.0346 | 50.0 | 300 | 0.5012 | 0.8049 |
Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0