hkivancoral's picture
End of training
840a0b6
metadata
license: apache-2.0
base_model: microsoft/beit-base-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: hushem_1x_beit_base_adamax_00001_fold5
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8048780487804879

hushem_1x_beit_base_adamax_00001_fold5

This model is a fine-tuned version of microsoft/beit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5012
  • Accuracy: 0.8049

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 6 1.3123 0.3415
1.3417 2.0 12 1.1955 0.5610
1.3417 3.0 18 1.0858 0.6098
0.9733 4.0 24 0.9881 0.6098
0.7755 5.0 30 0.9019 0.6829
0.7755 6.0 36 0.8266 0.7073
0.5866 7.0 42 0.7789 0.7073
0.5866 8.0 48 0.7323 0.7561
0.4247 9.0 54 0.6965 0.7805
0.3366 10.0 60 0.6709 0.8049
0.3366 11.0 66 0.6414 0.8049
0.2406 12.0 72 0.6309 0.8049
0.2406 13.0 78 0.6283 0.8049
0.1807 14.0 84 0.5831 0.7805
0.1504 15.0 90 0.5587 0.8049
0.1504 16.0 96 0.5622 0.8049
0.1175 17.0 102 0.5998 0.8049
0.1175 18.0 108 0.5569 0.8049
0.1107 19.0 114 0.5178 0.7805
0.0834 20.0 120 0.5243 0.7805
0.0834 21.0 126 0.5491 0.8293
0.0685 22.0 132 0.5414 0.8049
0.0685 23.0 138 0.5016 0.8049
0.0622 24.0 144 0.5127 0.8049
0.0553 25.0 150 0.5123 0.8049
0.0553 26.0 156 0.5115 0.8293
0.0606 27.0 162 0.5050 0.8293
0.0606 28.0 168 0.4920 0.8293
0.0617 29.0 174 0.4931 0.8049
0.042 30.0 180 0.5002 0.8049
0.042 31.0 186 0.5113 0.8049
0.0437 32.0 192 0.5113 0.8049
0.0437 33.0 198 0.5177 0.8049
0.0387 34.0 204 0.5166 0.8049
0.0462 35.0 210 0.5121 0.8049
0.0462 36.0 216 0.4996 0.8049
0.0301 37.0 222 0.4928 0.8049
0.0301 38.0 228 0.4955 0.8049
0.0363 39.0 234 0.4997 0.8049
0.0291 40.0 240 0.5021 0.8049
0.0291 41.0 246 0.5012 0.8049
0.0319 42.0 252 0.5012 0.8049
0.0319 43.0 258 0.5012 0.8049
0.0305 44.0 264 0.5012 0.8049
0.0298 45.0 270 0.5012 0.8049
0.0298 46.0 276 0.5012 0.8049
0.0437 47.0 282 0.5012 0.8049
0.0437 48.0 288 0.5012 0.8049
0.03 49.0 294 0.5012 0.8049
0.0346 50.0 300 0.5012 0.8049

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0