metadata
license: apache-2.0
base_model: microsoft/beit-base-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: hushem_1x_beit_base_sgd_001_fold4
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: test
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.42857142857142855
hushem_1x_beit_base_sgd_001_fold4
This model is a fine-tuned version of microsoft/beit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 1.2445
- Accuracy: 0.4286
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 1.0 | 6 | 1.4674 | 0.2857 |
1.5737 | 2.0 | 12 | 1.4371 | 0.2857 |
1.5737 | 3.0 | 18 | 1.4159 | 0.2857 |
1.4801 | 4.0 | 24 | 1.3992 | 0.3095 |
1.4412 | 5.0 | 30 | 1.3864 | 0.3095 |
1.4412 | 6.0 | 36 | 1.3718 | 0.3333 |
1.4214 | 7.0 | 42 | 1.3650 | 0.3333 |
1.4214 | 8.0 | 48 | 1.3546 | 0.3333 |
1.4025 | 9.0 | 54 | 1.3460 | 0.3571 |
1.3579 | 10.0 | 60 | 1.3410 | 0.3571 |
1.3579 | 11.0 | 66 | 1.3341 | 0.3810 |
1.3434 | 12.0 | 72 | 1.3286 | 0.3571 |
1.3434 | 13.0 | 78 | 1.3211 | 0.3571 |
1.3133 | 14.0 | 84 | 1.3148 | 0.3571 |
1.3087 | 15.0 | 90 | 1.3078 | 0.3810 |
1.3087 | 16.0 | 96 | 1.3038 | 0.3810 |
1.3233 | 17.0 | 102 | 1.2984 | 0.4048 |
1.3233 | 18.0 | 108 | 1.2937 | 0.4048 |
1.315 | 19.0 | 114 | 1.2905 | 0.4048 |
1.286 | 20.0 | 120 | 1.2858 | 0.4048 |
1.286 | 21.0 | 126 | 1.2830 | 0.4048 |
1.28 | 22.0 | 132 | 1.2809 | 0.3810 |
1.28 | 23.0 | 138 | 1.2789 | 0.3810 |
1.2571 | 24.0 | 144 | 1.2785 | 0.3810 |
1.23 | 25.0 | 150 | 1.2724 | 0.3810 |
1.23 | 26.0 | 156 | 1.2684 | 0.4048 |
1.2449 | 27.0 | 162 | 1.2640 | 0.4048 |
1.2449 | 28.0 | 168 | 1.2631 | 0.3810 |
1.2523 | 29.0 | 174 | 1.2607 | 0.3810 |
1.2307 | 30.0 | 180 | 1.2578 | 0.4286 |
1.2307 | 31.0 | 186 | 1.2559 | 0.4048 |
1.232 | 32.0 | 192 | 1.2529 | 0.4286 |
1.232 | 33.0 | 198 | 1.2518 | 0.4048 |
1.2339 | 34.0 | 204 | 1.2495 | 0.4286 |
1.2343 | 35.0 | 210 | 1.2485 | 0.4286 |
1.2343 | 36.0 | 216 | 1.2471 | 0.4286 |
1.2146 | 37.0 | 222 | 1.2460 | 0.4286 |
1.2146 | 38.0 | 228 | 1.2453 | 0.4286 |
1.2285 | 39.0 | 234 | 1.2453 | 0.4286 |
1.2244 | 40.0 | 240 | 1.2448 | 0.4286 |
1.2244 | 41.0 | 246 | 1.2445 | 0.4286 |
1.213 | 42.0 | 252 | 1.2445 | 0.4286 |
1.213 | 43.0 | 258 | 1.2445 | 0.4286 |
1.2249 | 44.0 | 264 | 1.2445 | 0.4286 |
1.1975 | 45.0 | 270 | 1.2445 | 0.4286 |
1.1975 | 46.0 | 276 | 1.2445 | 0.4286 |
1.2153 | 47.0 | 282 | 1.2445 | 0.4286 |
1.2153 | 48.0 | 288 | 1.2445 | 0.4286 |
1.2123 | 49.0 | 294 | 1.2445 | 0.4286 |
1.2144 | 50.0 | 300 | 1.2445 | 0.4286 |
Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0