hkivancoral's picture
End of training
b783afd
metadata
license: apache-2.0
base_model: microsoft/beit-base-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: hushem_1x_beit_base_sgd_001_fold4
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.42857142857142855

hushem_1x_beit_base_sgd_001_fold4

This model is a fine-tuned version of microsoft/beit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2445
  • Accuracy: 0.4286

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 6 1.4674 0.2857
1.5737 2.0 12 1.4371 0.2857
1.5737 3.0 18 1.4159 0.2857
1.4801 4.0 24 1.3992 0.3095
1.4412 5.0 30 1.3864 0.3095
1.4412 6.0 36 1.3718 0.3333
1.4214 7.0 42 1.3650 0.3333
1.4214 8.0 48 1.3546 0.3333
1.4025 9.0 54 1.3460 0.3571
1.3579 10.0 60 1.3410 0.3571
1.3579 11.0 66 1.3341 0.3810
1.3434 12.0 72 1.3286 0.3571
1.3434 13.0 78 1.3211 0.3571
1.3133 14.0 84 1.3148 0.3571
1.3087 15.0 90 1.3078 0.3810
1.3087 16.0 96 1.3038 0.3810
1.3233 17.0 102 1.2984 0.4048
1.3233 18.0 108 1.2937 0.4048
1.315 19.0 114 1.2905 0.4048
1.286 20.0 120 1.2858 0.4048
1.286 21.0 126 1.2830 0.4048
1.28 22.0 132 1.2809 0.3810
1.28 23.0 138 1.2789 0.3810
1.2571 24.0 144 1.2785 0.3810
1.23 25.0 150 1.2724 0.3810
1.23 26.0 156 1.2684 0.4048
1.2449 27.0 162 1.2640 0.4048
1.2449 28.0 168 1.2631 0.3810
1.2523 29.0 174 1.2607 0.3810
1.2307 30.0 180 1.2578 0.4286
1.2307 31.0 186 1.2559 0.4048
1.232 32.0 192 1.2529 0.4286
1.232 33.0 198 1.2518 0.4048
1.2339 34.0 204 1.2495 0.4286
1.2343 35.0 210 1.2485 0.4286
1.2343 36.0 216 1.2471 0.4286
1.2146 37.0 222 1.2460 0.4286
1.2146 38.0 228 1.2453 0.4286
1.2285 39.0 234 1.2453 0.4286
1.2244 40.0 240 1.2448 0.4286
1.2244 41.0 246 1.2445 0.4286
1.213 42.0 252 1.2445 0.4286
1.213 43.0 258 1.2445 0.4286
1.2249 44.0 264 1.2445 0.4286
1.1975 45.0 270 1.2445 0.4286
1.1975 46.0 276 1.2445 0.4286
1.2153 47.0 282 1.2445 0.4286
1.2153 48.0 288 1.2445 0.4286
1.2123 49.0 294 1.2445 0.4286
1.2144 50.0 300 1.2445 0.4286

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0