hkivancoral's picture
End of training
8b1f189
metadata
license: apache-2.0
base_model: facebook/deit-small-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: hushem_1x_deit_small_rms_0001_fold5
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.7073170731707317

hushem_1x_deit_small_rms_0001_fold5

This model is a fine-tuned version of facebook/deit-small-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 2.0948
  • Accuracy: 0.7073

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 6 1.4454 0.2439
1.8172 2.0 12 1.4646 0.2439
1.8172 3.0 18 1.3798 0.2439
1.4754 4.0 24 1.4689 0.2439
1.3952 5.0 30 1.4002 0.2439
1.3952 6.0 36 1.4703 0.2439
1.3837 7.0 42 1.4402 0.4390
1.3837 8.0 48 1.1526 0.4146
1.379 9.0 54 0.9870 0.7317
1.2244 10.0 60 0.9071 0.7317
1.2244 11.0 66 0.8229 0.6829
1.0625 12.0 72 1.5587 0.6341
1.0625 13.0 78 0.6583 0.6829
0.8932 14.0 84 0.6538 0.7073
0.7639 15.0 90 1.3081 0.4878
0.7639 16.0 96 1.0570 0.6341
0.5943 17.0 102 1.2582 0.5854
0.5943 18.0 108 0.7216 0.7805
0.3924 19.0 114 1.9152 0.5366
0.287 20.0 120 1.2648 0.5854
0.287 21.0 126 1.2267 0.6829
0.1533 22.0 132 1.4758 0.6585
0.1533 23.0 138 1.4603 0.7561
0.0513 24.0 144 2.1352 0.6098
0.0125 25.0 150 2.3347 0.6829
0.0125 26.0 156 1.8507 0.7073
0.024 27.0 162 1.9066 0.7073
0.024 28.0 168 1.9502 0.7073
0.0005 29.0 174 1.9771 0.7073
0.0004 30.0 180 1.9991 0.7073
0.0004 31.0 186 2.0117 0.7073
0.0003 32.0 192 2.0299 0.7073
0.0003 33.0 198 2.0438 0.7073
0.0003 34.0 204 2.0584 0.7073
0.0003 35.0 210 2.0666 0.7073
0.0003 36.0 216 2.0751 0.7073
0.0003 37.0 222 2.0815 0.7073
0.0003 38.0 228 2.0862 0.7073
0.0003 39.0 234 2.0898 0.7073
0.0002 40.0 240 2.0927 0.7073
0.0002 41.0 246 2.0945 0.7073
0.0003 42.0 252 2.0948 0.7073
0.0003 43.0 258 2.0948 0.7073
0.0002 44.0 264 2.0948 0.7073
0.0003 45.0 270 2.0948 0.7073
0.0003 46.0 276 2.0948 0.7073
0.0002 47.0 282 2.0948 0.7073
0.0002 48.0 288 2.0948 0.7073
0.0002 49.0 294 2.0948 0.7073
0.0002 50.0 300 2.0948 0.7073

Framework versions

  • Transformers 4.35.1
  • Pytorch 2.1.0+cu118
  • Datasets 2.14.7
  • Tokenizers 0.14.1