metadata
license: apache-2.0
base_model: facebook/deit-small-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: hushem_1x_deit_small_rms_0001_fold5
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: test
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.7073170731707317
hushem_1x_deit_small_rms_0001_fold5
This model is a fine-tuned version of facebook/deit-small-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 2.0948
- Accuracy: 0.7073
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 1.0 | 6 | 1.4454 | 0.2439 |
1.8172 | 2.0 | 12 | 1.4646 | 0.2439 |
1.8172 | 3.0 | 18 | 1.3798 | 0.2439 |
1.4754 | 4.0 | 24 | 1.4689 | 0.2439 |
1.3952 | 5.0 | 30 | 1.4002 | 0.2439 |
1.3952 | 6.0 | 36 | 1.4703 | 0.2439 |
1.3837 | 7.0 | 42 | 1.4402 | 0.4390 |
1.3837 | 8.0 | 48 | 1.1526 | 0.4146 |
1.379 | 9.0 | 54 | 0.9870 | 0.7317 |
1.2244 | 10.0 | 60 | 0.9071 | 0.7317 |
1.2244 | 11.0 | 66 | 0.8229 | 0.6829 |
1.0625 | 12.0 | 72 | 1.5587 | 0.6341 |
1.0625 | 13.0 | 78 | 0.6583 | 0.6829 |
0.8932 | 14.0 | 84 | 0.6538 | 0.7073 |
0.7639 | 15.0 | 90 | 1.3081 | 0.4878 |
0.7639 | 16.0 | 96 | 1.0570 | 0.6341 |
0.5943 | 17.0 | 102 | 1.2582 | 0.5854 |
0.5943 | 18.0 | 108 | 0.7216 | 0.7805 |
0.3924 | 19.0 | 114 | 1.9152 | 0.5366 |
0.287 | 20.0 | 120 | 1.2648 | 0.5854 |
0.287 | 21.0 | 126 | 1.2267 | 0.6829 |
0.1533 | 22.0 | 132 | 1.4758 | 0.6585 |
0.1533 | 23.0 | 138 | 1.4603 | 0.7561 |
0.0513 | 24.0 | 144 | 2.1352 | 0.6098 |
0.0125 | 25.0 | 150 | 2.3347 | 0.6829 |
0.0125 | 26.0 | 156 | 1.8507 | 0.7073 |
0.024 | 27.0 | 162 | 1.9066 | 0.7073 |
0.024 | 28.0 | 168 | 1.9502 | 0.7073 |
0.0005 | 29.0 | 174 | 1.9771 | 0.7073 |
0.0004 | 30.0 | 180 | 1.9991 | 0.7073 |
0.0004 | 31.0 | 186 | 2.0117 | 0.7073 |
0.0003 | 32.0 | 192 | 2.0299 | 0.7073 |
0.0003 | 33.0 | 198 | 2.0438 | 0.7073 |
0.0003 | 34.0 | 204 | 2.0584 | 0.7073 |
0.0003 | 35.0 | 210 | 2.0666 | 0.7073 |
0.0003 | 36.0 | 216 | 2.0751 | 0.7073 |
0.0003 | 37.0 | 222 | 2.0815 | 0.7073 |
0.0003 | 38.0 | 228 | 2.0862 | 0.7073 |
0.0003 | 39.0 | 234 | 2.0898 | 0.7073 |
0.0002 | 40.0 | 240 | 2.0927 | 0.7073 |
0.0002 | 41.0 | 246 | 2.0945 | 0.7073 |
0.0003 | 42.0 | 252 | 2.0948 | 0.7073 |
0.0003 | 43.0 | 258 | 2.0948 | 0.7073 |
0.0002 | 44.0 | 264 | 2.0948 | 0.7073 |
0.0003 | 45.0 | 270 | 2.0948 | 0.7073 |
0.0003 | 46.0 | 276 | 2.0948 | 0.7073 |
0.0002 | 47.0 | 282 | 2.0948 | 0.7073 |
0.0002 | 48.0 | 288 | 2.0948 | 0.7073 |
0.0002 | 49.0 | 294 | 2.0948 | 0.7073 |
0.0002 | 50.0 | 300 | 2.0948 | 0.7073 |
Framework versions
- Transformers 4.35.1
- Pytorch 2.1.0+cu118
- Datasets 2.14.7
- Tokenizers 0.14.1