hkivancoral's picture
End of training
9c29095
metadata
license: apache-2.0
base_model: facebook/deit-small-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: hushem_1x_deit_small_sgd_00001_fold5
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.24390243902439024

hushem_1x_deit_small_sgd_00001_fold5

This model is a fine-tuned version of facebook/deit-small-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.5124
  • Accuracy: 0.2439

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 6 1.5202 0.2195
1.5388 2.0 12 1.5198 0.2195
1.5388 3.0 18 1.5194 0.2195
1.5264 4.0 24 1.5190 0.2195
1.5345 5.0 30 1.5186 0.2195
1.5345 6.0 36 1.5183 0.2195
1.526 7.0 42 1.5179 0.2195
1.526 8.0 48 1.5176 0.2195
1.5157 9.0 54 1.5173 0.2195
1.5235 10.0 60 1.5170 0.2195
1.5235 11.0 66 1.5167 0.2195
1.5297 12.0 72 1.5164 0.2439
1.5297 13.0 78 1.5161 0.2439
1.4988 14.0 84 1.5158 0.2439
1.5228 15.0 90 1.5155 0.2439
1.5228 16.0 96 1.5153 0.2439
1.5206 17.0 102 1.5150 0.2439
1.5206 18.0 108 1.5148 0.2439
1.5425 19.0 114 1.5146 0.2439
1.5252 20.0 120 1.5144 0.2439
1.5252 21.0 126 1.5142 0.2439
1.5165 22.0 132 1.5140 0.2439
1.5165 23.0 138 1.5139 0.2439
1.5451 24.0 144 1.5137 0.2439
1.5198 25.0 150 1.5135 0.2439
1.5198 26.0 156 1.5134 0.2439
1.5047 27.0 162 1.5132 0.2439
1.5047 28.0 168 1.5131 0.2439
1.5384 29.0 174 1.5130 0.2439
1.5271 30.0 180 1.5129 0.2439
1.5271 31.0 186 1.5128 0.2439
1.5283 32.0 192 1.5127 0.2439
1.5283 33.0 198 1.5127 0.2439
1.4864 34.0 204 1.5126 0.2439
1.5229 35.0 210 1.5125 0.2439
1.5229 36.0 216 1.5125 0.2439
1.513 37.0 222 1.5125 0.2439
1.513 38.0 228 1.5124 0.2439
1.4969 39.0 234 1.5124 0.2439
1.5399 40.0 240 1.5124 0.2439
1.5399 41.0 246 1.5124 0.2439
1.5142 42.0 252 1.5124 0.2439
1.5142 43.0 258 1.5124 0.2439
1.5226 44.0 264 1.5124 0.2439
1.538 45.0 270 1.5124 0.2439
1.538 46.0 276 1.5124 0.2439
1.5217 47.0 282 1.5124 0.2439
1.5217 48.0 288 1.5124 0.2439
1.5124 49.0 294 1.5124 0.2439
1.5354 50.0 300 1.5124 0.2439

Framework versions

  • Transformers 4.35.0
  • Pytorch 2.1.0+cu118
  • Datasets 2.14.6
  • Tokenizers 0.14.1