emotion_classification

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2002
  • Accuracy: 0.6438

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 12
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 40 1.9756 0.2313
No log 2.0 80 1.6788 0.3937
No log 3.0 120 1.5219 0.5375
No log 4.0 160 1.4542 0.45
No log 5.0 200 1.3923 0.5
No log 6.0 240 1.3595 0.4437
No log 7.0 280 1.3111 0.5125
No log 8.0 320 1.2050 0.5625
No log 9.0 360 1.2387 0.5437
No log 10.0 400 1.2847 0.5437
No log 11.0 440 1.2048 0.5625
No log 12.0 480 1.2270 0.5563
1.0855 13.0 520 1.2058 0.5875
1.0855 14.0 560 1.1999 0.5625
1.0855 15.0 600 1.2032 0.5687

Framework versions

  • Transformers 4.41.1
  • Pytorch 2.1.2
  • Datasets 2.19.1
  • Tokenizers 0.19.1
Downloads last month
16
Safetensors
Model size
85.8M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for hmrizal/emotion_classification

Finetuned
(1817)
this model

Dataset used to train hmrizal/emotion_classification

Evaluation results