Translating Math Formula Images To LaTeX Sequences
Scaling Up Image-to-LaTeX Performance: Sumen An End-to-End Transformer Model With Large Dataset
Performance
Uses
Source code: https://github.com/hoang-quoc-trung/sumen
Inference
import torch
import requests
from PIL import Image
from transformers import AutoProcessor, VisionEncoderDecoderModel
# Load model & processor
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = VisionEncoderDecoderModel.from_pretrained('hoang-quoc-trung/sumen-base').to(device)
processor = AutoProcessor.from_pretrained('hoang-quoc-trung/sumen-base')
task_prompt = processor.tokenizer.bos_token
decoder_input_ids = processor.tokenizer(
task_prompt,
add_special_tokens=False,
return_tensors="pt"
).input_ids
# Load image
img_url = 'https://raw.githubusercontent.com/hoang-quoc-trung/sumen/main/assets/example_1.png'
image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB')
pixel_values = processor.image_processor(
image,
return_tensors="pt",
data_format="channels_first",
).pixel_values
# Generate LaTeX expression
with torch.no_grad():
outputs = model.generate(
pixel_values.to(device),
decoder_input_ids=decoder_input_ids.to(device),
max_length=model.decoder.config.max_length,
pad_token_id=processor.tokenizer.pad_token_id,
eos_token_id=processor.tokenizer.eos_token_id,
use_cache=True,
num_beams=4,
bad_words_ids=[[processor.tokenizer.unk_token_id]],
return_dict_in_generate=True,
)
sequence = processor.tokenizer.batch_decode(outputs.sequences)[0]
sequence = sequence.replace(
processor.tokenizer.eos_token, ""
).replace(
processor.tokenizer.pad_token, ""
).replace(processor.tokenizer.bos_token,"")
print(sequence)
- Downloads last month
- 25
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.