Audio-Text-to-Text
Safetensors
English
llama
sound language model

Model Details

We have developed and released the family Ichigo-llama3s. This family is natively understanding audio and text input.

This model focused on fine-tuning the model to improve user interaction from homebrewltd/Ichigo-llama3.1-s-instruct-v0.3-phase-2, particularly in handling inaudible inputs and multi-turn conversations.

Model developers Homebrew Research.

Input Text and sound.

Output Text.

Model Architecture Llama-3.

Language(s): English.

Intended Use

Intended Use Cases This family is primarily intended for research applications. This version aims to further improve the LLM on sound understanding capabilities.

Out-of-scope The use of llama3-s in any manner that violates applicable laws or regulations is strictly prohibited.

How to Get Started with the Model

Try this model using Google Colab Notebook.

First, we need to convert the audio file to sound tokens

device = "cuda" if torch.cuda.is_available() else "cpu"
if not os.path.exists("whisper-vq-stoks-medium-en+pl-fixed.model"):
    hf_hub_download(
        repo_id="jan-hq/WhisperVQ",
        filename="whisper-vq-stoks-medium-en+pl-fixed.model",
        local_dir=".",
    )
vq_model = RQBottleneckTransformer.load_model(
        "whisper-vq-stoks-medium-en+pl-fixed.model"
    ).to(device)
vq_model.ensure_whisper(device)
def audio_to_sound_tokens(audio_path, target_bandwidth=1.5, device=device):

    wav, sr = torchaudio.load(audio_path)
    if sr != 16000:
        wav = torchaudio.functional.resample(wav, sr, 16000)
    with torch.no_grad():
        codes = vq_model.encode_audio(wav.to(device))
        codes = codes[0].cpu().tolist()

    result = ''.join(f'<|sound_{num:04d}|>' for num in codes)
    return f'<|sound_start|>{result}<|sound_end|>'

Then, we can inference the model the same as any other LLM.

def setup_pipeline(model_path, use_4bit=False, use_8bit=False):
    tokenizer = AutoTokenizer.from_pretrained(model_path)

    model_kwargs = {"device_map": "auto"}

    if use_4bit:
        model_kwargs["quantization_config"] = BitsAndBytesConfig(
            load_in_4bit=True,
            bnb_4bit_compute_dtype=torch.bfloat16,
            bnb_4bit_use_double_quant=True,
            bnb_4bit_quant_type="nf4",
        )
    elif use_8bit:
        model_kwargs["quantization_config"] = BitsAndBytesConfig(
            load_in_8bit=True,
            bnb_8bit_compute_dtype=torch.bfloat16,
            bnb_8bit_use_double_quant=True,
        )
    else:
        model_kwargs["torch_dtype"] = torch.bfloat16

    model = AutoModelForCausalLM.from_pretrained(model_path, **model_kwargs)

    return pipeline("text-generation", model=model, tokenizer=tokenizer)

def generate_text(pipe, messages, max_new_tokens=64, temperature=0.0, do_sample=False):
    generation_args = {
        "max_new_tokens": max_new_tokens,
        "return_full_text": False,
        "temperature": temperature,
        "do_sample": do_sample,
    }

    output = pipe(messages, **generation_args)
    return output[0]['generated_text']

# Usage
llm_path = "homebrewltd/llama3.1-s-instruct-v0.2"
pipe = setup_pipeline(llm_path, use_8bit=True)

Training process

Training Metrics Image: Below is a snapshot of the training loss curve visualized.

image/png

MMLU:

Model MMLU Score
llama3.5-instruct-8b 69.40
ichigo-llama3.1-s-v0.3: phase 3 63.79
ichigo-llama3.1-s-v0.3: phase 2 63.08
ichigo-llama3.1-s-base-v0.3 42.11
llama3.5-instruct-v0.2 50.27

AudioBench Eval:

Hardware

GPU Configuration: Cluster of 8x NVIDIA H100-SXM-80GB.

GPU Usage:

  • Continual Training: 3 hours.

Training Arguments

We utilize torchtune library for the latest FSDP2 training code implementation.

Parameter Continual Training
Epoch 1
Global batch size 256
Learning Rate 1.5e-5
Learning Scheduler LambdaLR with warmup
Optimizer AdamW Fused
Warmup Steps 8
Weight Decay 0.005
Max length 4096
Precision bf16

More detail

Paper: http://arxiv.org/abs/2410.15316

Citation Information

BibTeX:

@article{Llama3-S: Sound Instruction Language Model 2024,
  title={Llama3-S},
  author={Homebrew Research},
  year=2024,
  month=August},
  url={https://huggingface.co/homebrewltd/llama3.1-s-2024-08-20}

Acknowledgement

Downloads last month
91
Safetensors
Model size
8.03B params
Tensor type
BF16
Β·
Inference API
Unable to determine this model's library. Check the docs .

Model tree for homebrewltd/Ichigo-llama3.1-s-instruct-v0.3-phase-3

Quantizations
1 model

Dataset used to train homebrewltd/Ichigo-llama3.1-s-instruct-v0.3-phase-3

Spaces using homebrewltd/Ichigo-llama3.1-s-instruct-v0.3-phase-3 2

Collection including homebrewltd/Ichigo-llama3.1-s-instruct-v0.3-phase-3