videomae-base-finetuned-ucf101-subset-face

This model is a fine-tuned version of MCG-NJU/videomae-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 2.5315
  • Accuracy: 0.6389

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 3
  • eval_batch_size: 3
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • training_steps: 2000

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.8253 9.005 100 1.7977 0.1667
1.6427 19.005 200 2.1211 0.1667
1.0603 29.005 300 2.5370 0.1944
0.6361 39.005 400 1.9683 0.4444
0.7149 49.005 500 2.8125 0.3889
0.3396 59.005 600 2.2497 0.5556
0.3026 69.005 700 1.7178 0.6389
0.3043 79.005 800 2.5029 0.6111
0.1636 89.005 900 2.7748 0.6111
0.1292 99.005 1000 2.1868 0.6389
0.5229 109.005 1100 2.4543 0.6111
0.0016 119.005 1200 1.7452 0.75
0.0013 129.005 1300 2.5026 0.6111
0.0011 139.005 1400 2.3153 0.6389
0.0011 149.005 1500 1.7536 0.75
0.0028 159.005 1600 2.5384 0.6389
0.0605 169.005 1700 2.6368 0.6111
0.2064 179.005 1800 2.3678 0.6667
0.0013 189.005 1900 2.4561 0.6389
0.0009 199.005 2000 2.5315 0.6389

Framework versions

  • Transformers 4.45.0
  • Pytorch 2.4.1+cu118
  • Datasets 3.0.0
  • Tokenizers 0.20.0
Downloads last month
61
Safetensors
Model size
86.2M params
Tensor type
F32
·
Inference API
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for huahua1/videomae-base-finetuned-ucf101-subset-face

Finetuned
(454)
this model