File size: 2,789 Bytes
3cbaa7b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 |
---
library_name: transformers
license: cc-by-nc-4.0
base_model: MCG-NJU/videomae-base
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: videomae-base-finetuned-ucf101-subset-face
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# videomae-base-finetuned-ucf101-subset-face
This model is a fine-tuned version of [MCG-NJU/videomae-base](https://huggingface.co/MCG-NJU/videomae-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 2.5315
- Accuracy: 0.6389
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 3
- eval_batch_size: 3
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 2000
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-------:|:----:|:---------------:|:--------:|
| 1.8253 | 9.005 | 100 | 1.7977 | 0.1667 |
| 1.6427 | 19.005 | 200 | 2.1211 | 0.1667 |
| 1.0603 | 29.005 | 300 | 2.5370 | 0.1944 |
| 0.6361 | 39.005 | 400 | 1.9683 | 0.4444 |
| 0.7149 | 49.005 | 500 | 2.8125 | 0.3889 |
| 0.3396 | 59.005 | 600 | 2.2497 | 0.5556 |
| 0.3026 | 69.005 | 700 | 1.7178 | 0.6389 |
| 0.3043 | 79.005 | 800 | 2.5029 | 0.6111 |
| 0.1636 | 89.005 | 900 | 2.7748 | 0.6111 |
| 0.1292 | 99.005 | 1000 | 2.1868 | 0.6389 |
| 0.5229 | 109.005 | 1100 | 2.4543 | 0.6111 |
| 0.0016 | 119.005 | 1200 | 1.7452 | 0.75 |
| 0.0013 | 129.005 | 1300 | 2.5026 | 0.6111 |
| 0.0011 | 139.005 | 1400 | 2.3153 | 0.6389 |
| 0.0011 | 149.005 | 1500 | 1.7536 | 0.75 |
| 0.0028 | 159.005 | 1600 | 2.5384 | 0.6389 |
| 0.0605 | 169.005 | 1700 | 2.6368 | 0.6111 |
| 0.2064 | 179.005 | 1800 | 2.3678 | 0.6667 |
| 0.0013 | 189.005 | 1900 | 2.4561 | 0.6389 |
| 0.0009 | 199.005 | 2000 | 2.5315 | 0.6389 |
### Framework versions
- Transformers 4.45.0
- Pytorch 2.4.1+cu118
- Datasets 3.0.0
- Tokenizers 0.20.0
|