CodeBERTa-language-id: The World’s fanciest programming language identification algo 🤯

To demonstrate the usefulness of our CodeBERTa pretrained model on downstream tasks beyond language modeling, we fine-tune the CodeBERTa-small-v1 checkpoint on the task of classifying a sample of code into the programming language it's written in (programming language identification).

We add a sequence classification head on top of the model.

On the evaluation dataset, we attain an eval accuracy and F1 > 0.999 which is not surprising given that the task of language identification is relatively easy (see an intuition why, below).

Quick start: using the raw model

CODEBERTA_LANGUAGE_ID = "huggingface/CodeBERTa-language-id"

tokenizer = RobertaTokenizer.from_pretrained(CODEBERTA_LANGUAGE_ID)
model = RobertaForSequenceClassification.from_pretrained(CODEBERTA_LANGUAGE_ID)

input_ids = tokenizer.encode(CODE_TO_IDENTIFY)
logits = model(input_ids)[0]

language_idx = logits.argmax() # index for the resulting label

Quick start: using Pipelines 💪

from transformers import TextClassificationPipeline

pipeline = TextClassificationPipeline(
    model=RobertaForSequenceClassification.from_pretrained(CODEBERTA_LANGUAGE_ID),
    tokenizer=RobertaTokenizer.from_pretrained(CODEBERTA_LANGUAGE_ID)
)

pipeline(CODE_TO_IDENTIFY)

Let's start with something very easy:

pipeline("""
def f(x):
    return x**2
""")
# [{'label': 'python', 'score': 0.9999965}]

Now let's probe shorter code samples:

pipeline("const foo = 'bar'")
# [{'label': 'javascript', 'score': 0.9977546}]

What if I remove the const token from the assignment?

pipeline("foo = 'bar'")
# [{'label': 'javascript', 'score': 0.7176245}]

For some reason, this is still statistically detected as JS code, even though it's also valid Python code. However, if we slightly tweak it:

pipeline("foo = u'bar'")
# [{'label': 'python', 'score': 0.7638422}]

This is now detected as Python (Notice the u string modifier).

Okay, enough with the JS and Python domination already! Let's try fancier languages:

pipeline("echo $FOO")
# [{'label': 'php', 'score': 0.9995257}]

(Yes, I used the word "fancy" to describe PHP 😅)

pipeline("outcome := rand.Intn(6) + 1")
# [{'label': 'go', 'score': 0.9936151}]

Why is the problem of language identification so easy (with the correct toolkit)? Because code's syntax is rigid, and simple tokens such as := (the assignment operator in Go) are perfect predictors of the underlying language:

pipeline(":=")
# [{'label': 'go', 'score': 0.9998052}]

By the way, because we trained our own custom tokenizer on the CodeSearchNet dataset, and it handles streams of bytes in a very generic way, syntactic constructs such := are represented by a single token:

self.tokenizer.encode(" :=", add_special_tokens=False)
# [521]

Fine-tuning code

import gzip
import json
import logging
import os
from pathlib import Path
from typing import Dict, List, Tuple

import numpy as np
import torch
from sklearn.metrics import f1_score
from tokenizers.implementations.byte_level_bpe import ByteLevelBPETokenizer
from tokenizers.processors import BertProcessing
from torch.nn.utils.rnn import pad_sequence
from torch.utils.data import DataLoader, Dataset
from torch.utils.data.dataset import Dataset
from torch.utils.tensorboard.writer import SummaryWriter
from tqdm import tqdm, trange

from transformers import RobertaForSequenceClassification
from transformers.data.metrics import acc_and_f1, simple_accuracy


logging.basicConfig(level=logging.INFO)


CODEBERTA_PRETRAINED = "huggingface/CodeBERTa-small-v1"

LANGUAGES = [
    "go",
    "java",
    "javascript",
    "php",
    "python",
    "ruby",
]
FILES_PER_LANGUAGE = 1
EVALUATE = True

# Set up tokenizer
tokenizer = ByteLevelBPETokenizer("./pretrained/vocab.json", "./pretrained/merges.txt",)
tokenizer._tokenizer.post_processor = BertProcessing(
    ("</s>", tokenizer.token_to_id("</s>")), ("<s>", tokenizer.token_to_id("<s>")),
)
tokenizer.enable_truncation(max_length=512)

# Set up Tensorboard
tb_writer = SummaryWriter()


class CodeSearchNetDataset(Dataset):
    examples: List[Tuple[List[int], int]]

    def __init__(self, split: str = "train"):
        """
        train | valid | test
        """

        self.examples = []

        src_files = []
        for language in LANGUAGES:
            src_files += list(
                Path("../CodeSearchNet/resources/data/").glob(f"{language}/final/jsonl/{split}/*.jsonl.gz")
            )[:FILES_PER_LANGUAGE]
        for src_file in src_files:
            label = src_file.parents[3].name
            label_idx = LANGUAGES.index(label)
            print("🔥", src_file, label)
            lines = []
            fh = gzip.open(src_file, mode="rt", encoding="utf-8")
            for line in fh:
                o = json.loads(line)
                lines.append(o["code"])
            examples = [(x.ids, label_idx) for x in tokenizer.encode_batch(lines)]
            self.examples += examples
        print("🔥🔥")

    def __len__(self):
        return len(self.examples)

    def __getitem__(self, i):
        # We’ll pad at the batch level.
        return self.examples[i]


model = RobertaForSequenceClassification.from_pretrained(CODEBERTA_PRETRAINED, num_labels=len(LANGUAGES))

train_dataset = CodeSearchNetDataset(split="train")
eval_dataset = CodeSearchNetDataset(split="test")


def collate(examples):
    input_ids = pad_sequence([torch.tensor(x[0]) for x in examples], batch_first=True, padding_value=1)
    labels = torch.tensor([x[1] for x in examples])
    # ^^  uncessary .unsqueeze(-1)
    return input_ids, labels


train_dataloader = DataLoader(train_dataset, batch_size=256, shuffle=True, collate_fn=collate)

batch = next(iter(train_dataloader))


model.to("cuda")
model.train()
for param in model.roberta.parameters():
    param.requires_grad = False
## ^^ Only train final layer.

print(f"num params:", model.num_parameters())
print(f"num trainable params:", model.num_parameters(only_trainable=True))


def evaluate():
    eval_loss = 0.0
    nb_eval_steps = 0
    preds = np.empty((0), dtype=np.int64)
    out_label_ids = np.empty((0), dtype=np.int64)

    model.eval()

    eval_dataloader = DataLoader(eval_dataset, batch_size=512, collate_fn=collate)
    for step, (input_ids, labels) in enumerate(tqdm(eval_dataloader, desc="Eval")):
        with torch.no_grad():
            outputs = model(input_ids=input_ids.to("cuda"), labels=labels.to("cuda"))
            loss = outputs[0]
            logits = outputs[1]
            eval_loss += loss.mean().item()
            nb_eval_steps += 1
        preds = np.append(preds, logits.argmax(dim=1).detach().cpu().numpy(), axis=0)
        out_label_ids = np.append(out_label_ids, labels.detach().cpu().numpy(), axis=0)
    eval_loss = eval_loss / nb_eval_steps
    acc = simple_accuracy(preds, out_label_ids)
    f1 = f1_score(y_true=out_label_ids, y_pred=preds, average="macro")
    print("=== Eval: loss ===", eval_loss)
    print("=== Eval: acc. ===", acc)
    print("=== Eval: f1 ===", f1)
    # print(acc_and_f1(preds, out_label_ids))
    tb_writer.add_scalars("eval", {"loss": eval_loss, "acc": acc, "f1": f1}, global_step)


### Training loop

global_step = 0
train_iterator = trange(0, 4, desc="Epoch")
optimizer = torch.optim.AdamW(model.parameters())
for _ in train_iterator:
    epoch_iterator = tqdm(train_dataloader, desc="Iteration")
    for step, (input_ids, labels) in enumerate(epoch_iterator):
        optimizer.zero_grad()
        outputs = model(input_ids=input_ids.to("cuda"), labels=labels.to("cuda"))
        loss = outputs[0]
        loss.backward()
        tb_writer.add_scalar("training_loss", loss.item(), global_step)
        optimizer.step()
        global_step += 1
        if EVALUATE and global_step % 50 == 0:
            evaluate()
            model.train()


evaluate()

os.makedirs("./models/CodeBERT-language-id", exist_ok=True)
model.save_pretrained("./models/CodeBERT-language-id")

CodeSearchNet citation

@article{husain_codesearchnet_2019,
    title = {{CodeSearchNet} {Challenge}: {Evaluating} the {State} of {Semantic} {Code} {Search}},
    shorttitle = {{CodeSearchNet} {Challenge}},
    url = {http://arxiv.org/abs/1909.09436},
    urldate = {2020-03-12},
    journal = {arXiv:1909.09436 [cs, stat]},
    author = {Husain, Hamel and Wu, Ho-Hsiang and Gazit, Tiferet and Allamanis, Miltiadis and Brockschmidt, Marc},
    month = sep,
    year = {2019},
    note = {arXiv: 1909.09436},
}
Downloads last month
1,849
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for huggingface/CodeBERTa-language-id

Finetuned
(10)
this model
Merges
1 model
Quantizations
1 model

Dataset used to train huggingface/CodeBERTa-language-id

Spaces using huggingface/CodeBERTa-language-id 2