MicroThinker-1B-Preview

MicroThinker-1B-Preview, a new model fine-tuned from the huihui-ai/Llama-3.2-1B-Instruct-abliterated model, focused on advancing AI reasoning capabilities.

Use with ollama

You can use huihui_ai/microthinker directly

ollama run huihui_ai/microthinker

Training Details

This is just a test, but the performance is quite good.

Now, I'll introduce the test environment.

The model was trained using 1 RTX 4090 GPU(24GB) .

The fine-tuning process used only 20,000 records from each dataset.

The SFT (Supervised Fine-Tuning) process is divided into several steps, and no code needs to be written.

  1. Create the environment.
conda create -yn ms-swift python=3.11
conda activate ms-swift

git clone https://github.com/modelscope/ms-swift.git

cd ms-swift
pip install -e .
cd ..
  1. Download the model and dataset.
huggingface-cli download huihui-ai/Llama-3.2-1B-Instruct-abliterated --local-dir ./huihui-ai/Llama-3.2-1B-Instruct-abliterated
huggingface-cli download --repo-type  dataset huihui-ai/QWQ-LONGCOT-500K --local-dir ./data/QWQ-LONGCOT-500K
huggingface-cli download --repo-type  dataset huihui-ai/LONGCOT-Refine-500K --local-dir ./data/LONGCOT-Refine-500K
  1. Used only the huihui-ai/QWQ-LONGCOT-500K dataset (#20000), Trained for 1 epoch:
swift sft --model huihui-ai/Llama-3.2-1B-Instruct-abliterated --model_type llama3_2 --train_type lora --dataset "data/QWQ-LONGCOT-500K/qwq_500k.jsonl#20000" --torch_dtype bfloat16 --num_train_epochs 1 --per_device_train_batch_size 1 --per_device_eval_batch_size 1 --learning_rate 1e-4 --lora_rank 8 --lora_alpha 32 --target_modules all-linear --gradient_accumulation_steps 16 --eval_steps 50 --save_steps 50 --save_total_limit 2 --logging_steps 5  --max_length 16384  --output_dir output/Llama-3.2-1B-Instruct-abliterated/lora/sft --system "You are a helpful assistant. You should think step-by-step." --warmup_ratio 0.05 --dataloader_num_workers 4 --model_author "huihui-ai" --model_name "MicroThinker"
  1. Save the fine-tuned model. After you're done, input exit to exit. Replace the directories below with specific ones.
swift infer --model huihui-ai/Llama-3.2-1B-Instruct-abliterated --adapters output/Llama-3.2-1B-Instruct-abliterated/lora/sft/v0-20250102-153619/checkpoint-1237 --stream true --merge_lora true 

This should create a new model directory: checkpoint-1237-merged, Copy or move this directory to the huihui directory.

  1. Perform inference on the fine-tuned model.
swift infer --model huihui/checkpoint-1237-merged --stream true --infer_backend pt --max_new_tokens 8192
  1. Combined training with huihui-ai/QWQ-LONGCOT-500K (#20000) and huihui-ai/LONGCOT-Refine datasets (#20000), Trained for 1 epoch:
swift sft --model huihui-ai/checkpoint-1237-merged --model_type llama3_2 --train_type lora --dataset "data/QWQ-LONGCOT-500K/qwq_500k.jsonl#20000" "data/LONGCOT-Refine-500K/refine_from_qwen2_5.jsonl#20000" --torch_dtype bfloat16 --num_train_epochs 1 --per_device_train_batch_size 1 --per_device_eval_batch_size 1 --learning_rate 1e-4 --lora_rank 8 --lora_alpha 32 --target_modules all-linear --gradient_accumulation_steps 16 --eval_steps 50 --save_steps 50 --save_total_limit 2 --logging_steps 5  --max_length 16384  --output_dir output/Llama-3.2-1B-Instruct-abliterated/lora/sft2 --system "You are a helpful assistant. You should think step-by-step." --warmup_ratio 0.05 --dataloader_num_workers 4 --model_author "huihui-ai" --model_name "MicroThinker"
  1. Save the final fine-tuned model. After you're done, input exit to exit. Replace the directories below with specific ones.
swift infer --model huihui-ai/checkpoint-1237-merged --adapters output/Llama-3.2-1B-Instruct-abliterated/lora/sft2/v0-20250103-121319/checkpoint-2474 --stream true --merge_lora true 

This should create a new model directory: checkpoint-2474-merged, Rename the directory to MicroThinker-1B-Preview, Copy or move this directory to the huihui directory.

  1. Perform inference on the final fine-tuned model.
swift infer --model huihui/MicroThinker-1B-Preview --stream true --infer_backend pt --max_new_tokens 8192
  1. Test examples.
How many 'r' characters are there in the word "strawberry"?
Downloads last month
283
Safetensors
Model size
1.24B params
Tensor type
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for huihui-ai/MicroThinker-1B-Preview

Finetuned
(2)
this model
Merges
1 model
Quantizations
4 models

Datasets used to train huihui-ai/MicroThinker-1B-Preview

Collection including huihui-ai/MicroThinker-1B-Preview