File size: 4,626 Bytes
3df4fe3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
from mivolo_model import MiVOLOModel
import torch
import torchvision.transforms as transforms
from ultralytics import YOLO
from PIL import Image
import numpy as np
import os
import requests

def download_files_to_cache(urls, file_names, cache_dir_name="age_estimation"):
    def download_file(url, save_path):
        response = requests.get(url, stream=True)
        response.raise_for_status()  # Check if the download was successful

        with open(save_path, 'wb') as file:
            for chunk in response.iter_content(chunk_size=8192):
                file.write(chunk)
        print(f"File downloaded and saved to {save_path}")

    # Định nghĩa đường dẫn tới thư mục cache
    cache_dir = os.path.join(os.path.expanduser("~"), ".cache", cache_dir_name)

    # Tạo thư mục cache nếu chưa tồn tại
    os.makedirs(cache_dir, exist_ok=True)

    # Tải các file nếu chưa tồn tại
    for url, file_name in zip(urls, file_names):
        save_path = os.path.join(cache_dir, file_name)
        if not os.path.exists(save_path):
            print(f"File {file_name} does not exist. Downloading...")
            download_file(url, save_path)
        else:
            print(f"File {file_name} already exists at {save_path}")

# URL của các file cần tải
urls = [
    "https://huggingface.co/hungdang1610/estimate_age/resolve/main/models/best_model_weights_10.pth?download=true",
    "https://huggingface.co/hungdang1610/estimate_age/resolve/main/models/yolov8x_person_face.pt?download=true"
]

# Định nghĩa tên file tương ứng để lưu
file_names = [
    "best_model_weights_10.pth",
    "yolov8x_person_face.pt"
]
model_path = os.path.join(os.path.expanduser("~"), ".cache/age_estimation/best_model_weights_10.pth")
detection_path = os.path.join(os.path.expanduser("~"), ".cache/age_estimation/yolov8x_person_face.pt")
# Gọi hàm để tải file
download_files_to_cache(urls, file_names)

IMAGENET_DEFAULT_MEAN = (0.485, 0.456, 0.406)
IMAGENET_DEFAULT_STD = (0.229, 0.224, 0.225)
MEAN_TRAIN = 36.64
STD_TRAIN = 21.74
model = MiVOLOModel(
    layers=(4, 4, 8, 2),
    img_size=224,
    in_chans=6,
    num_classes=3,
    patch_size=8,
    stem_hidden_dim=64,
    embed_dims=(192, 384, 384, 384),
    num_heads=(6, 12, 12, 12),
).to('cpu')
state = torch.load(model_path, map_location="cpu")
model.load_state_dict(state, strict=True)
# model = torch.load("models/model.pth")
transform_infer = transforms.Compose([
    transforms.Resize((224, 224), interpolation=transforms.InterpolationMode.BICUBIC),
    transforms.ToTensor(),
    transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
detector = YOLO(detection_path)
def chunk_then_stack(image):
    # image = Image.open(image_path).convert("RGB")
    image_np = np.array(image)
    results = detector.predict(image_np, conf=0.35)
    for result in results:
        boxes = result.boxes

        # Khởi tạo các giá trị ban đầu
        face_coords = [None, None, None, None]
        person_coords = [None, None, None, None]

        # Lấy tọa độ của bounding boxes
        for i, box in enumerate(boxes.xyxy):
            cls = int(boxes.cls[i].item())
            x_min, y_min, x_max, y_max = map(int, box.tolist())  # Chuyển tọa độ sang int

            # Lưu tọa độ vào đúng trường tương ứng
            if cls == 1:  # Face
                face_coords = [x_min, y_min, x_max, y_max]
            elif cls == 0:  # Person
                person_coords = [x_min, y_min, x_max, y_max]

    return face_coords, person_coords



def tranfer_image(image):
    # image = Image.open(img_path).convert('RGB')
    face_coords, person_coords = chunk_then_stack(image)
    face_image = image.crop((int(face_coords[0]), int(face_coords[1]), int(face_coords[2]), int(face_coords[3])))

    person_image = image.crop((int(person_coords[0]), int(person_coords[1]), int(person_coords[2]), int(person_coords[3])))
    
    # Resize ảnh về (224, 224)
    face_image = face_image.resize((224, 224))
    person_image = person_image.resize((224, 224))
    face_image = transform_infer(face_image)
    person_image = transform_infer(person_image)


    image_ = torch.cat((face_image, person_image), dim=0)
    return image_.unsqueeze(0)

image = Image.open("1.jpg").convert('RGB')
image_ = tranfer_image(image)
print(image_.shape)
import time
start_time = time.time()
output = model(image_)
output_mse = output[:, 2]
predicted_age = output_mse.item() *STD_TRAIN + MEAN_TRAIN
print("inference time: ", time.time() - start_time)
print("predicted_age: ", predicted_age)