hungdang1610
commited on
mivolo
Browse files- models/mivolo_model.py +404 -0
models/mivolo_model.py
ADDED
@@ -0,0 +1,404 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Code adapted from timm https://github.com/huggingface/pytorch-image-models
|
3 |
+
|
4 |
+
Modifications and additions for mivolo by / Copyright 2023, Irina Tolstykh, Maxim Kuprashevich
|
5 |
+
"""
|
6 |
+
|
7 |
+
import torch
|
8 |
+
import torch.nn as nn
|
9 |
+
from cross_bottleneck_attn import CrossBottleneckAttn
|
10 |
+
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
|
11 |
+
from timm.layers import trunc_normal_
|
12 |
+
from timm.models._builder import build_model_with_cfg
|
13 |
+
from timm.models._registry import register_model
|
14 |
+
from timm.models.volo import VOLO
|
15 |
+
|
16 |
+
__all__ = ["MiVOLOModel"] # model_registry will add each entrypoint fn to this
|
17 |
+
|
18 |
+
|
19 |
+
def _cfg(url="", **kwargs):
|
20 |
+
return {
|
21 |
+
"url": url,
|
22 |
+
"num_classes": 1000,
|
23 |
+
"input_size": (3, 224, 224),
|
24 |
+
"pool_size": None,
|
25 |
+
"crop_pct": 0.96,
|
26 |
+
"interpolation": "bicubic",
|
27 |
+
"fixed_input_size": True,
|
28 |
+
"mean": IMAGENET_DEFAULT_MEAN,
|
29 |
+
"std": IMAGENET_DEFAULT_STD,
|
30 |
+
"first_conv": None,
|
31 |
+
"classifier": ("head", "aux_head"),
|
32 |
+
**kwargs,
|
33 |
+
}
|
34 |
+
|
35 |
+
|
36 |
+
default_cfgs = {
|
37 |
+
"mivolo_d1_224": _cfg(
|
38 |
+
url="https://github.com/sail-sg/volo/releases/download/volo_1/d1_224_84.2.pth.tar", crop_pct=0.96
|
39 |
+
),
|
40 |
+
"mivolo_d1_384": _cfg(
|
41 |
+
url="https://github.com/sail-sg/volo/releases/download/volo_1/d1_384_85.2.pth.tar",
|
42 |
+
crop_pct=1.0,
|
43 |
+
input_size=(3, 384, 384),
|
44 |
+
),
|
45 |
+
"mivolo_d2_224": _cfg(
|
46 |
+
url="https://github.com/sail-sg/volo/releases/download/volo_1/d2_224_85.2.pth.tar", crop_pct=0.96
|
47 |
+
),
|
48 |
+
"mivolo_d2_384": _cfg(
|
49 |
+
url="https://github.com/sail-sg/volo/releases/download/volo_1/d2_384_86.0.pth.tar",
|
50 |
+
crop_pct=1.0,
|
51 |
+
input_size=(3, 384, 384),
|
52 |
+
),
|
53 |
+
"mivolo_d3_224": _cfg(
|
54 |
+
url="https://github.com/sail-sg/volo/releases/download/volo_1/d3_224_85.4.pth.tar", crop_pct=0.96
|
55 |
+
),
|
56 |
+
"mivolo_d3_448": _cfg(
|
57 |
+
url="https://github.com/sail-sg/volo/releases/download/volo_1/d3_448_86.3.pth.tar",
|
58 |
+
crop_pct=1.0,
|
59 |
+
input_size=(3, 448, 448),
|
60 |
+
),
|
61 |
+
"mivolo_d4_224": _cfg(
|
62 |
+
url="https://github.com/sail-sg/volo/releases/download/volo_1/d4_224_85.7.pth.tar", crop_pct=0.96
|
63 |
+
),
|
64 |
+
"mivolo_d4_448": _cfg(
|
65 |
+
url="https://github.com/sail-sg/volo/releases/download/volo_1/d4_448_86.79.pth.tar",
|
66 |
+
crop_pct=1.15,
|
67 |
+
input_size=(3, 448, 448),
|
68 |
+
),
|
69 |
+
"mivolo_d5_224": _cfg(
|
70 |
+
url="https://github.com/sail-sg/volo/releases/download/volo_1/d5_224_86.10.pth.tar", crop_pct=0.96
|
71 |
+
),
|
72 |
+
"mivolo_d5_448": _cfg(
|
73 |
+
url="https://github.com/sail-sg/volo/releases/download/volo_1/d5_448_87.0.pth.tar",
|
74 |
+
crop_pct=1.15,
|
75 |
+
input_size=(3, 448, 448),
|
76 |
+
),
|
77 |
+
"mivolo_d5_512": _cfg(
|
78 |
+
url="https://github.com/sail-sg/volo/releases/download/volo_1/d5_512_87.07.pth.tar",
|
79 |
+
crop_pct=1.15,
|
80 |
+
input_size=(3, 512, 512),
|
81 |
+
),
|
82 |
+
}
|
83 |
+
|
84 |
+
|
85 |
+
def get_output_size(input_shape, conv_layer):
|
86 |
+
padding = conv_layer.padding
|
87 |
+
dilation = conv_layer.dilation
|
88 |
+
kernel_size = conv_layer.kernel_size
|
89 |
+
stride = conv_layer.stride
|
90 |
+
|
91 |
+
output_size = [
|
92 |
+
((input_shape[i] + 2 * padding[i] - dilation[i] * (kernel_size[i] - 1) - 1) // stride[i]) + 1 for i in range(2)
|
93 |
+
]
|
94 |
+
return output_size
|
95 |
+
|
96 |
+
|
97 |
+
def get_output_size_module(input_size, stem):
|
98 |
+
output_size = input_size
|
99 |
+
|
100 |
+
for module in stem:
|
101 |
+
if isinstance(module, nn.Conv2d):
|
102 |
+
output_size = [
|
103 |
+
(
|
104 |
+
(output_size[i] + 2 * module.padding[i] - module.dilation[i] * (module.kernel_size[i] - 1) - 1)
|
105 |
+
// module.stride[i]
|
106 |
+
)
|
107 |
+
+ 1
|
108 |
+
for i in range(2)
|
109 |
+
]
|
110 |
+
|
111 |
+
return output_size
|
112 |
+
|
113 |
+
|
114 |
+
class PatchEmbed(nn.Module):
|
115 |
+
"""Image to Patch Embedding."""
|
116 |
+
|
117 |
+
def __init__(
|
118 |
+
self, img_size=224, stem_conv=False, stem_stride=1, patch_size=8, in_chans=3, hidden_dim=64, embed_dim=384
|
119 |
+
):
|
120 |
+
super().__init__()
|
121 |
+
assert patch_size in [4, 8, 16]
|
122 |
+
assert in_chans in [3, 6]
|
123 |
+
self.with_persons_model = in_chans == 6
|
124 |
+
self.use_cross_attn = True
|
125 |
+
|
126 |
+
if stem_conv:
|
127 |
+
if not self.with_persons_model:
|
128 |
+
self.conv = self.create_stem(stem_stride, in_chans, hidden_dim)
|
129 |
+
else:
|
130 |
+
self.conv = True # just to match interface
|
131 |
+
# split
|
132 |
+
self.conv1 = self.create_stem(stem_stride, 3, hidden_dim)
|
133 |
+
self.conv2 = self.create_stem(stem_stride, 3, hidden_dim)
|
134 |
+
else:
|
135 |
+
self.conv = None
|
136 |
+
|
137 |
+
if self.with_persons_model:
|
138 |
+
|
139 |
+
self.proj1 = nn.Conv2d(
|
140 |
+
hidden_dim, embed_dim, kernel_size=patch_size // stem_stride, stride=patch_size // stem_stride
|
141 |
+
)
|
142 |
+
self.proj2 = nn.Conv2d(
|
143 |
+
hidden_dim, embed_dim, kernel_size=patch_size // stem_stride, stride=patch_size // stem_stride
|
144 |
+
)
|
145 |
+
|
146 |
+
stem_out_shape = get_output_size_module((img_size, img_size), self.conv1)
|
147 |
+
self.proj_output_size = get_output_size(stem_out_shape, self.proj1)
|
148 |
+
|
149 |
+
self.map = CrossBottleneckAttn(embed_dim, dim_out=embed_dim, num_heads=1, feat_size=self.proj_output_size)
|
150 |
+
|
151 |
+
else:
|
152 |
+
self.proj = nn.Conv2d(
|
153 |
+
hidden_dim, embed_dim, kernel_size=patch_size // stem_stride, stride=patch_size // stem_stride
|
154 |
+
)
|
155 |
+
|
156 |
+
self.patch_dim = img_size // patch_size
|
157 |
+
self.num_patches = self.patch_dim**2
|
158 |
+
|
159 |
+
def create_stem(self, stem_stride, in_chans, hidden_dim):
|
160 |
+
return nn.Sequential(
|
161 |
+
nn.Conv2d(in_chans, hidden_dim, kernel_size=7, stride=stem_stride, padding=3, bias=False), # 112x112
|
162 |
+
nn.BatchNorm2d(hidden_dim),
|
163 |
+
nn.ReLU(inplace=True),
|
164 |
+
nn.Conv2d(hidden_dim, hidden_dim, kernel_size=3, stride=1, padding=1, bias=False), # 112x112
|
165 |
+
nn.BatchNorm2d(hidden_dim),
|
166 |
+
nn.ReLU(inplace=True),
|
167 |
+
nn.Conv2d(hidden_dim, hidden_dim, kernel_size=3, stride=1, padding=1, bias=False), # 112x112
|
168 |
+
nn.BatchNorm2d(hidden_dim),
|
169 |
+
nn.ReLU(inplace=True),
|
170 |
+
)
|
171 |
+
|
172 |
+
def forward(self, x):
|
173 |
+
if self.conv is not None:
|
174 |
+
if self.with_persons_model:
|
175 |
+
x1 = x[:, :3]
|
176 |
+
x2 = x[:, 3:]
|
177 |
+
|
178 |
+
x1 = self.conv1(x1)
|
179 |
+
x1 = self.proj1(x1)
|
180 |
+
|
181 |
+
x2 = self.conv2(x2)
|
182 |
+
x2 = self.proj2(x2)
|
183 |
+
|
184 |
+
x = torch.cat([x1, x2], dim=1)
|
185 |
+
x = self.map(x)
|
186 |
+
else:
|
187 |
+
x = self.conv(x)
|
188 |
+
x = self.proj(x) # B, C, H, W
|
189 |
+
|
190 |
+
return x
|
191 |
+
|
192 |
+
|
193 |
+
class MiVOLOModel(VOLO):
|
194 |
+
"""
|
195 |
+
Vision Outlooker, the main class of our model
|
196 |
+
"""
|
197 |
+
|
198 |
+
def __init__(
|
199 |
+
self,
|
200 |
+
layers,
|
201 |
+
img_size=224,
|
202 |
+
in_chans=3,
|
203 |
+
num_classes=1000,
|
204 |
+
global_pool="token",
|
205 |
+
patch_size=8,
|
206 |
+
stem_hidden_dim=64,
|
207 |
+
embed_dims=None,
|
208 |
+
num_heads=None,
|
209 |
+
downsamples=(True, False, False, False),
|
210 |
+
outlook_attention=(True, False, False, False),
|
211 |
+
mlp_ratio=3.0,
|
212 |
+
qkv_bias=False,
|
213 |
+
drop_rate=0.0,
|
214 |
+
attn_drop_rate=0.0,
|
215 |
+
drop_path_rate=0.0,
|
216 |
+
norm_layer=nn.LayerNorm,
|
217 |
+
post_layers=("ca", "ca"),
|
218 |
+
use_aux_head=True,
|
219 |
+
use_mix_token=False,
|
220 |
+
pooling_scale=2,
|
221 |
+
):
|
222 |
+
super().__init__(
|
223 |
+
layers,
|
224 |
+
img_size,
|
225 |
+
in_chans,
|
226 |
+
num_classes,
|
227 |
+
global_pool,
|
228 |
+
patch_size,
|
229 |
+
stem_hidden_dim,
|
230 |
+
embed_dims,
|
231 |
+
num_heads,
|
232 |
+
downsamples,
|
233 |
+
outlook_attention,
|
234 |
+
mlp_ratio,
|
235 |
+
qkv_bias,
|
236 |
+
drop_rate,
|
237 |
+
attn_drop_rate,
|
238 |
+
drop_path_rate,
|
239 |
+
norm_layer,
|
240 |
+
post_layers,
|
241 |
+
use_aux_head,
|
242 |
+
use_mix_token,
|
243 |
+
pooling_scale,
|
244 |
+
)
|
245 |
+
|
246 |
+
im_size = img_size[0] if isinstance(img_size, tuple) else img_size
|
247 |
+
self.patch_embed = PatchEmbed(
|
248 |
+
img_size=im_size,
|
249 |
+
stem_conv=True,
|
250 |
+
stem_stride=2,
|
251 |
+
patch_size=patch_size,
|
252 |
+
in_chans=in_chans,
|
253 |
+
hidden_dim=stem_hidden_dim,
|
254 |
+
embed_dim=embed_dims[0],
|
255 |
+
)
|
256 |
+
|
257 |
+
trunc_normal_(self.pos_embed, std=0.02)
|
258 |
+
self.apply(self._init_weights)
|
259 |
+
|
260 |
+
def forward_features(self, x):
|
261 |
+
x = self.patch_embed(x).permute(0, 2, 3, 1) # B,C,H,W-> B,H,W,C
|
262 |
+
|
263 |
+
# step2: tokens learning in the two stages
|
264 |
+
x = self.forward_tokens(x)
|
265 |
+
|
266 |
+
# step3: post network, apply class attention or not
|
267 |
+
if self.post_network is not None:
|
268 |
+
x = self.forward_cls(x)
|
269 |
+
x = self.norm(x)
|
270 |
+
return x
|
271 |
+
|
272 |
+
def forward_head(self, x, pre_logits: bool = False, targets=None, epoch=None):
|
273 |
+
if self.global_pool == "avg":
|
274 |
+
out = x.mean(dim=1)
|
275 |
+
elif self.global_pool == "token":
|
276 |
+
out = x[:, 0]
|
277 |
+
else:
|
278 |
+
out = x
|
279 |
+
if pre_logits:
|
280 |
+
return out
|
281 |
+
|
282 |
+
features = out
|
283 |
+
fds_enabled = hasattr(self, "_fds_forward")
|
284 |
+
if fds_enabled:
|
285 |
+
features = self._fds_forward(features, targets, epoch)
|
286 |
+
|
287 |
+
out = self.head(features)
|
288 |
+
if self.aux_head is not None:
|
289 |
+
# generate classes in all feature tokens, see token labeling
|
290 |
+
aux = self.aux_head(x[:, 1:])
|
291 |
+
out = out + 0.5 * aux.max(1)[0]
|
292 |
+
|
293 |
+
return (out, features) if (fds_enabled and self.training) else out
|
294 |
+
|
295 |
+
def forward(self, x, targets=None, epoch=None):
|
296 |
+
"""simplified forward (without mix token training)"""
|
297 |
+
x = self.forward_features(x)
|
298 |
+
x = self.forward_head(x, targets=targets, epoch=epoch)
|
299 |
+
return x
|
300 |
+
|
301 |
+
|
302 |
+
def _create_mivolo(variant, pretrained=False, **kwargs):
|
303 |
+
if kwargs.get("features_only", None):
|
304 |
+
raise RuntimeError("features_only not implemented for Vision Transformer models.")
|
305 |
+
return build_model_with_cfg(MiVOLOModel, variant, pretrained, **kwargs)
|
306 |
+
|
307 |
+
|
308 |
+
@register_model
|
309 |
+
def mivolo_d1_224(pretrained=False, **kwargs):
|
310 |
+
model_args = dict(layers=(4, 4, 8, 2), embed_dims=(192, 384, 384, 384), num_heads=(6, 12, 12, 12), **kwargs)
|
311 |
+
model = _create_mivolo("mivolo_d1_224", pretrained=pretrained, **model_args)
|
312 |
+
return model
|
313 |
+
|
314 |
+
|
315 |
+
@register_model
|
316 |
+
def mivolo_d1_384(pretrained=False, **kwargs):
|
317 |
+
model_args = dict(layers=(4, 4, 8, 2), embed_dims=(192, 384, 384, 384), num_heads=(6, 12, 12, 12), **kwargs)
|
318 |
+
model = _create_mivolo("mivolo_d1_384", pretrained=pretrained, **model_args)
|
319 |
+
return model
|
320 |
+
|
321 |
+
|
322 |
+
@register_model
|
323 |
+
def mivolo_d2_224(pretrained=False, **kwargs):
|
324 |
+
model_args = dict(layers=(6, 4, 10, 4), embed_dims=(256, 512, 512, 512), num_heads=(8, 16, 16, 16), **kwargs)
|
325 |
+
model = _create_mivolo("mivolo_d2_224", pretrained=pretrained, **model_args)
|
326 |
+
return model
|
327 |
+
|
328 |
+
|
329 |
+
@register_model
|
330 |
+
def mivolo_d2_384(pretrained=False, **kwargs):
|
331 |
+
model_args = dict(layers=(6, 4, 10, 4), embed_dims=(256, 512, 512, 512), num_heads=(8, 16, 16, 16), **kwargs)
|
332 |
+
model = _create_mivolo("mivolo_d2_384", pretrained=pretrained, **model_args)
|
333 |
+
return model
|
334 |
+
|
335 |
+
|
336 |
+
@register_model
|
337 |
+
def mivolo_d3_224(pretrained=False, **kwargs):
|
338 |
+
model_args = dict(layers=(8, 8, 16, 4), embed_dims=(256, 512, 512, 512), num_heads=(8, 16, 16, 16), **kwargs)
|
339 |
+
model = _create_mivolo("mivolo_d3_224", pretrained=pretrained, **model_args)
|
340 |
+
return model
|
341 |
+
|
342 |
+
|
343 |
+
@register_model
|
344 |
+
def mivolo_d3_448(pretrained=False, **kwargs):
|
345 |
+
model_args = dict(layers=(8, 8, 16, 4), embed_dims=(256, 512, 512, 512), num_heads=(8, 16, 16, 16), **kwargs)
|
346 |
+
model = _create_mivolo("mivolo_d3_448", pretrained=pretrained, **model_args)
|
347 |
+
return model
|
348 |
+
|
349 |
+
|
350 |
+
@register_model
|
351 |
+
def mivolo_d4_224(pretrained=False, **kwargs):
|
352 |
+
model_args = dict(layers=(8, 8, 16, 4), embed_dims=(384, 768, 768, 768), num_heads=(12, 16, 16, 16), **kwargs)
|
353 |
+
model = _create_mivolo("mivolo_d4_224", pretrained=pretrained, **model_args)
|
354 |
+
return model
|
355 |
+
|
356 |
+
|
357 |
+
@register_model
|
358 |
+
def mivolo_d4_448(pretrained=False, **kwargs):
|
359 |
+
"""VOLO-D4 model, Params: 193M"""
|
360 |
+
model_args = dict(layers=(8, 8, 16, 4), embed_dims=(384, 768, 768, 768), num_heads=(12, 16, 16, 16), **kwargs)
|
361 |
+
model = _create_mivolo("mivolo_d4_448", pretrained=pretrained, **model_args)
|
362 |
+
return model
|
363 |
+
|
364 |
+
|
365 |
+
@register_model
|
366 |
+
def mivolo_d5_224(pretrained=False, **kwargs):
|
367 |
+
model_args = dict(
|
368 |
+
layers=(12, 12, 20, 4),
|
369 |
+
embed_dims=(384, 768, 768, 768),
|
370 |
+
num_heads=(12, 16, 16, 16),
|
371 |
+
mlp_ratio=4,
|
372 |
+
stem_hidden_dim=128,
|
373 |
+
**kwargs
|
374 |
+
)
|
375 |
+
model = _create_mivolo("mivolo_d5_224", pretrained=pretrained, **model_args)
|
376 |
+
return model
|
377 |
+
|
378 |
+
|
379 |
+
@register_model
|
380 |
+
def mivolo_d5_448(pretrained=False, **kwargs):
|
381 |
+
model_args = dict(
|
382 |
+
layers=(12, 12, 20, 4),
|
383 |
+
embed_dims=(384, 768, 768, 768),
|
384 |
+
num_heads=(12, 16, 16, 16),
|
385 |
+
mlp_ratio=4,
|
386 |
+
stem_hidden_dim=128,
|
387 |
+
**kwargs
|
388 |
+
)
|
389 |
+
model = _create_mivolo("mivolo_d5_448", pretrained=pretrained, **model_args)
|
390 |
+
return model
|
391 |
+
|
392 |
+
|
393 |
+
@register_model
|
394 |
+
def mivolo_d5_512(pretrained=False, **kwargs):
|
395 |
+
model_args = dict(
|
396 |
+
layers=(12, 12, 20, 4),
|
397 |
+
embed_dims=(384, 768, 768, 768),
|
398 |
+
num_heads=(12, 16, 16, 16),
|
399 |
+
mlp_ratio=4,
|
400 |
+
stem_hidden_dim=128,
|
401 |
+
**kwargs
|
402 |
+
)
|
403 |
+
model = _create_mivolo("mivolo_d5_512", pretrained=pretrained, **model_args)
|
404 |
+
return model
|