metadata
base_model: klue/roberta-base
datasets: []
language: []
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:10501
- loss:CosineSimilarityLoss
widget:
- source_sentence: 기업은 생존 문제에 직면하고, 자영업자와 소상공인의 고통은 이루 말할 수 없을 정도입니다.
sentences:
- 자유무역은 기업이 서로를 신뢰하고, 미래의 불확실성을 낮추는 안전장치입니다.
- >-
국가 임상연구 승인, 시행기관 지정, 장기 추적조사 등 안전관리체계를 구축하고 치료 개발 및 임상연구 수행을 위한 RD 투자를
확대합니다.
- 중심가와 거리가 조금 먼 점 빼고는 정말 모든게 너무 좋았던 숙소입니다!
- source_sentence: 타이페이를 다시 간다면 여기 또 올거예요.
sentences:
- 사진으로 봤던것보다 훨씬 더 좋았습니다
- 겨울에 난방 온도 이십오도 이상으로 올리지마라고 경고했어
- 만약 내가 다시 타이페이에 간다면, 나는 여기에 다시 올 것입니다.
- source_sentence: 호주의 좋은 가정집에서 묵는 느낌이었어요.
sentences:
- >-
어린이 교통사고 위험지역에 CCTV 2087대, 신호등 2146개를 올해 상반기 중으로 설치하고 옐로카펫과 노란발자국 등을 올해
하반기에 초등학교 100곳에 시범 설치한다.
- 호주에 있는 좋은 집에서 지내는 것 같았어요.
- 그러나 호텔업계 노사가 가장 어려운 시기에, 가장 모범적으로 함께 마음을 모았습니다.
- source_sentence: 그들덕분에 우리는 4일간 편안히 쉴 수 있었습니다.
sentences:
- 그들 덕분에, 우리는 4일 동안 쉴 수 있었어요.
- 주변에 두 개의 지하철역이 있습니다. 큰 공원, 큰 슈퍼마켓, 그리고 편의점이 있습니다.
- 방은 쾌적하고 에어컨도 아주 잘 나와요.
- source_sentence: 테라스에서 봤던 뷰와 그곳에서 먹었던 식사가 그리울 것 같아요.
sentences:
- 테라스에서 본 풍경과 거기서 먹었던 음식이 그리울 것 같아요.
- 이쪽 주변에서 여행할 계획이라면 추천합니다!
- 저희 할아버지는 매우 친절하고 친절하십니다.
co2_eq_emissions:
emissions: 7.379414346751554
energy_consumed: 0.016863301234344347
source: codecarbon
training_type: fine-tuning
on_cloud: false
cpu_model: 13th Gen Intel(R) Core(TM) i7-13700
ram_total_size: 62.56697463989258
hours_used: 0.057
hardware_used: 1 x NVIDIA GeForce RTX 4090
model-index:
- name: SentenceTransformer based on klue/roberta-base
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: Unknown
type: unknown
metrics:
- type: pearson_cosine
value: 0.34770704341988723
name: Pearson Cosine
- type: spearman_cosine
value: 0.35560473197486514
name: Spearman Cosine
- type: pearson_manhattan
value: 0.3673846313946801
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.36460670798564826
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.3607451203867209
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.35482778401649034
name: Spearman Euclidean
- type: pearson_dot
value: 0.21251167982120983
name: Pearson Dot
- type: spearman_dot
value: 0.20063256899469895
name: Spearman Dot
- type: pearson_max
value: 0.3673846313946801
name: Pearson Max
- type: spearman_max
value: 0.36460670798564826
name: Spearman Max
- type: pearson_cosine
value: 0.961968864970919
name: Pearson Cosine
- type: spearman_cosine
value: 0.9196100863981246
name: Spearman Cosine
- type: pearson_manhattan
value: 0.9530332430579778
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.9186168431687389
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.9532923011007042
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.9190754386835427
name: Spearman Euclidean
- type: pearson_dot
value: 0.9493179101338206
name: Pearson Dot
- type: spearman_dot
value: 0.8999468521869318
name: Spearman Dot
- type: pearson_max
value: 0.961968864970919
name: Pearson Max
- type: spearman_max
value: 0.9196100863981246
name: Spearman Max
SentenceTransformer based on klue/roberta-base
This is a sentence-transformers model finetuned from klue/roberta-base. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: klue/roberta-base
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'테라스에서 봤던 뷰와 그곳에서 먹었던 식사가 그리울 것 같아요.',
'테라스에서 본 풍경과 거기서 먹었던 음식이 그리울 것 같아요.',
'이쪽 주변에서 여행할 계획이라면 추천합니다!',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.3477 |
spearman_cosine | 0.3556 |
pearson_manhattan | 0.3674 |
spearman_manhattan | 0.3646 |
pearson_euclidean | 0.3607 |
spearman_euclidean | 0.3548 |
pearson_dot | 0.2125 |
spearman_dot | 0.2006 |
pearson_max | 0.3674 |
spearman_max | 0.3646 |
Semantic Similarity
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.962 |
spearman_cosine | 0.9196 |
pearson_manhattan | 0.953 |
spearman_manhattan | 0.9186 |
pearson_euclidean | 0.9533 |
spearman_euclidean | 0.9191 |
pearson_dot | 0.9493 |
spearman_dot | 0.8999 |
pearson_max | 0.962 |
spearman_max | 0.9196 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 10,501 training samples
- Columns:
sentence_0
,sentence_1
, andlabel
- Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 label type string string float details - min: 7 tokens
- mean: 20.23 tokens
- max: 64 tokens
- min: 5 tokens
- mean: 19.94 tokens
- max: 63 tokens
- min: 0.0
- mean: 0.44
- max: 1.0
- Samples:
sentence_0 sentence_1 label 지하철 역 내려서 1분정도의 아주 가까운 거리입니다.
지하철역에서 1분 정도 아주 가까운 거리입니다.
0.86
그것빼곤 2인여행자들에게는 좋은숙소에요!
계단이 많다는거 빼곤 완벽한 숙소에요!
0.27999999999999997
이어 현금이 286만 가구(13.2%) 1조3007억원, 선불카드가 75만 가구(3.5%) 4990억원, 지역사랑상품권은 63만 가구(2.9%) 4171억원으로 각각 집계됐다.
이어 현금 286만 가구(13.2%), 현금 1조337억 원, 선불카드 75만 가구(3.5%), 4990억 원, 지역사랑상품권 63만 가구(2.9%), 4171억 원 순이었습니다.
0.86
- Loss:
CosineSimilarityLoss
with these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 16per_device_eval_batch_size
: 16num_train_epochs
: 4multi_dataset_batch_sampler
: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1num_train_epochs
: 4max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseeval_use_gather_object
: Falsebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: round_robin
Training Logs
Epoch | Step | Training Loss | spearman_max |
---|---|---|---|
0 | 0 | - | 0.3646 |
0.7610 | 500 | 0.0283 | - |
1.0 | 657 | - | 0.9075 |
1.5221 | 1000 | 0.0082 | 0.9148 |
2.0 | 1314 | - | 0.9148 |
2.2831 | 1500 | 0.0047 | - |
3.0 | 1971 | - | 0.9180 |
3.0441 | 2000 | 0.0034 | 0.9168 |
3.8052 | 2500 | 0.0027 | - |
4.0 | 2628 | - | 0.9196 |
Environmental Impact
Carbon emissions were measured using CodeCarbon.
- Energy Consumed: 0.017 kWh
- Carbon Emitted: 0.007 kg of CO2
- Hours Used: 0.057 hours
Training Hardware
- On Cloud: No
- GPU Model: 1 x NVIDIA GeForce RTX 4090
- CPU Model: 13th Gen Intel(R) Core(TM) i7-13700
- RAM Size: 62.57 GB
Framework Versions
- Python: 3.9.0
- Sentence Transformers: 3.0.1
- Transformers: 4.44.1
- PyTorch: 2.3.1+cu121
- Accelerate: 0.33.0
- Datasets: 2.19.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}