metadata
language:
- sw
- en
license: cc-by-4.0
library_name: peft
datasets:
- iamshnoo/alpaca-cleaned-swahili
base_model: meta-llama/Llama-2-7b-hf
This represents the PEFT weights only. The base model is LLaMA 2. Instruction finetuning was done using 4 bit QLoRA on a single A100 GPU with the PEFT config as given below. The dataset used for this instruction finetuning process is a translated version of the cleaned alpaca dataset (translated using NLLB-1.3B).
Do note that this model might have inferior performance on some language specific tasks compared to full finetuning or a different base model trained with more language specific data.
Training procedure
The following bitsandbytes
quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
Framework versions
- PEFT 0.4.0