Victor Shirasuna
commited on
Commit
·
db22044
1
Parent(s):
2b992bc
Added changes
Browse files
smi-ted/finetune/finetune_classification.py
CHANGED
@@ -28,7 +28,7 @@ def main(config):
|
|
28 |
elif config.smi_ted_version == 'v2':
|
29 |
from smi_ted_large.load import load_smi_ted
|
30 |
|
31 |
-
model = load_smi_ted(folder=config.model_path, ckpt_filename=config.ckpt_filename, n_output=config.n_output)
|
32 |
model.net.apply(model._init_weights)
|
33 |
print(model.net)
|
34 |
|
@@ -46,6 +46,7 @@ def main(config):
|
|
46 |
hparams=config,
|
47 |
target_metric=config.target_metric,
|
48 |
seed=config.start_seed,
|
|
|
49 |
checkpoints_folder=config.checkpoints_folder,
|
50 |
device=device,
|
51 |
save_every_epoch=bool(config.save_every_epoch),
|
|
|
28 |
elif config.smi_ted_version == 'v2':
|
29 |
from smi_ted_large.load import load_smi_ted
|
30 |
|
31 |
+
model = load_smi_ted(folder=config.model_path, ckpt_filename=config.ckpt_filename, n_output=config.n_output, eval=False)
|
32 |
model.net.apply(model._init_weights)
|
33 |
print(model.net)
|
34 |
|
|
|
46 |
hparams=config,
|
47 |
target_metric=config.target_metric,
|
48 |
seed=config.start_seed,
|
49 |
+
smi_ted_version=config.smi_ted_version,
|
50 |
checkpoints_folder=config.checkpoints_folder,
|
51 |
device=device,
|
52 |
save_every_epoch=bool(config.save_every_epoch),
|
smi-ted/finetune/finetune_classification_multitask.py
CHANGED
@@ -60,7 +60,7 @@ def main(config):
|
|
60 |
elif config.smi_ted_version == 'v2':
|
61 |
from smi_ted_large.load import load_smi_ted
|
62 |
|
63 |
-
model = load_smi_ted(folder=config.model_path, ckpt_filename=config.ckpt_filename, n_output=len(targets))
|
64 |
model.net.apply(model._init_weights)
|
65 |
print(model.net)
|
66 |
|
@@ -78,6 +78,7 @@ def main(config):
|
|
78 |
hparams=config,
|
79 |
target_metric=config.target_metric,
|
80 |
seed=config.start_seed,
|
|
|
81 |
checkpoints_folder=config.checkpoints_folder,
|
82 |
device=device,
|
83 |
save_every_epoch=bool(config.save_every_epoch),
|
|
|
60 |
elif config.smi_ted_version == 'v2':
|
61 |
from smi_ted_large.load import load_smi_ted
|
62 |
|
63 |
+
model = load_smi_ted(folder=config.model_path, ckpt_filename=config.ckpt_filename, n_output=len(targets), eval=False)
|
64 |
model.net.apply(model._init_weights)
|
65 |
print(model.net)
|
66 |
|
|
|
78 |
hparams=config,
|
79 |
target_metric=config.target_metric,
|
80 |
seed=config.start_seed,
|
81 |
+
smi_ted_version=config.smi_ted_version,
|
82 |
checkpoints_folder=config.checkpoints_folder,
|
83 |
device=device,
|
84 |
save_every_epoch=bool(config.save_every_epoch),
|
smi-ted/finetune/finetune_regression.py
CHANGED
@@ -28,7 +28,7 @@ def main(config):
|
|
28 |
elif config.smi_ted_version == 'v2':
|
29 |
from smi_ted_large.load import load_smi_ted
|
30 |
|
31 |
-
model = load_smi_ted(folder=config.model_path, ckpt_filename=config.ckpt_filename, n_output=config.n_output)
|
32 |
model.net.apply(model._init_weights)
|
33 |
print(model.net)
|
34 |
|
@@ -48,6 +48,7 @@ def main(config):
|
|
48 |
hparams=config,
|
49 |
target_metric=config.target_metric,
|
50 |
seed=config.start_seed,
|
|
|
51 |
checkpoints_folder=config.checkpoints_folder,
|
52 |
device=device,
|
53 |
save_every_epoch=bool(config.save_every_epoch),
|
|
|
28 |
elif config.smi_ted_version == 'v2':
|
29 |
from smi_ted_large.load import load_smi_ted
|
30 |
|
31 |
+
model = load_smi_ted(folder=config.model_path, ckpt_filename=config.ckpt_filename, n_output=config.n_output, eval=False)
|
32 |
model.net.apply(model._init_weights)
|
33 |
print(model.net)
|
34 |
|
|
|
48 |
hparams=config,
|
49 |
target_metric=config.target_metric,
|
50 |
seed=config.start_seed,
|
51 |
+
smi_ted_version=config.smi_ted_version,
|
52 |
checkpoints_folder=config.checkpoints_folder,
|
53 |
device=device,
|
54 |
save_every_epoch=bool(config.save_every_epoch),
|
smi-ted/finetune/smi_ted_large/load.py
CHANGED
@@ -318,7 +318,7 @@ class Net(nn.Module):
|
|
318 |
|
319 |
class MoLEncoder(nn.Module):
|
320 |
|
321 |
-
def __init__(self, config, n_vocab):
|
322 |
super(MoLEncoder, self).__init__()
|
323 |
|
324 |
# embeddings
|
@@ -337,7 +337,7 @@ class MoLEncoder(nn.Module):
|
|
337 |
# unless we do deterministic_eval here, we will have random outputs
|
338 |
feature_map=partial(GeneralizedRandomFeatures,
|
339 |
n_dims=config['num_feats'],
|
340 |
-
deterministic_eval=
|
341 |
activation='gelu'
|
342 |
)
|
343 |
self.blocks = builder.get()
|
@@ -361,7 +361,7 @@ class MoLDecoder(nn.Module):
|
|
361 |
class Smi_ted(nn.Module):
|
362 |
"""materials.smi-ted-Large 738M Parameters"""
|
363 |
|
364 |
-
def __init__(self, tokenizer, config=None):
|
365 |
super(Smi_ted, self).__init__()
|
366 |
|
367 |
# configuration
|
@@ -373,11 +373,11 @@ class Smi_ted(nn.Module):
|
|
373 |
|
374 |
# instantiate modules
|
375 |
if self.config:
|
376 |
-
self.encoder = MoLEncoder(self.config, self.n_vocab)
|
377 |
self.decoder = MoLDecoder(self.n_vocab, self.config['max_len'], self.config['n_embd'])
|
378 |
self.net = Net(self.config['n_embd'], n_output=self.config['n_output'], dropout=self.config['dropout'])
|
379 |
|
380 |
-
def load_checkpoint(self, ckpt_path,
|
381 |
# load checkpoint file
|
382 |
checkpoint = torch.load(ckpt_path, map_location=torch.device('cpu'))
|
383 |
|
@@ -388,7 +388,7 @@ class Smi_ted(nn.Module):
|
|
388 |
self._set_seed(self.config['seed'])
|
389 |
|
390 |
# instantiate modules
|
391 |
-
self.encoder = MoLEncoder(self.config, self.n_vocab)
|
392 |
self.decoder = MoLDecoder(self.n_vocab, self.max_len, self.n_embd)
|
393 |
self.net = Net(self.n_embd, n_output=self.config['n_output'] if 'n_output' in self.config else n_output, dropout=self.config['dropout'])
|
394 |
|
@@ -493,11 +493,12 @@ class Smi_ted(nn.Module):
|
|
493 |
def load_smi_ted(folder="./smi_ted_large",
|
494 |
ckpt_filename="smi-ted-Large_30.pt",
|
495 |
vocab_filename="bert_vocab_curated.txt",
|
496 |
-
n_output=1
|
|
|
497 |
):
|
498 |
tokenizer = MolTranBertTokenizer(os.path.join(folder, vocab_filename))
|
499 |
model = Smi_ted(tokenizer)
|
500 |
-
model.load_checkpoint(os.path.join(folder, ckpt_filename), n_output)
|
501 |
print('Vocab size:', len(tokenizer.vocab))
|
502 |
print(f'[FINETUNE MODE - {str(model)}]')
|
503 |
return model
|
|
|
318 |
|
319 |
class MoLEncoder(nn.Module):
|
320 |
|
321 |
+
def __init__(self, config, n_vocab, eval=False):
|
322 |
super(MoLEncoder, self).__init__()
|
323 |
|
324 |
# embeddings
|
|
|
337 |
# unless we do deterministic_eval here, we will have random outputs
|
338 |
feature_map=partial(GeneralizedRandomFeatures,
|
339 |
n_dims=config['num_feats'],
|
340 |
+
deterministic_eval=eval),
|
341 |
activation='gelu'
|
342 |
)
|
343 |
self.blocks = builder.get()
|
|
|
361 |
class Smi_ted(nn.Module):
|
362 |
"""materials.smi-ted-Large 738M Parameters"""
|
363 |
|
364 |
+
def __init__(self, tokenizer, config=None, eval=False):
|
365 |
super(Smi_ted, self).__init__()
|
366 |
|
367 |
# configuration
|
|
|
373 |
|
374 |
# instantiate modules
|
375 |
if self.config:
|
376 |
+
self.encoder = MoLEncoder(self.config, self.n_vocab, eval=eval)
|
377 |
self.decoder = MoLDecoder(self.n_vocab, self.config['max_len'], self.config['n_embd'])
|
378 |
self.net = Net(self.config['n_embd'], n_output=self.config['n_output'], dropout=self.config['dropout'])
|
379 |
|
380 |
+
def load_checkpoint(self, ckpt_path, n_outputm eval=False):
|
381 |
# load checkpoint file
|
382 |
checkpoint = torch.load(ckpt_path, map_location=torch.device('cpu'))
|
383 |
|
|
|
388 |
self._set_seed(self.config['seed'])
|
389 |
|
390 |
# instantiate modules
|
391 |
+
self.encoder = MoLEncoder(self.config, self.n_vocab, eval=eval)
|
392 |
self.decoder = MoLDecoder(self.n_vocab, self.max_len, self.n_embd)
|
393 |
self.net = Net(self.n_embd, n_output=self.config['n_output'] if 'n_output' in self.config else n_output, dropout=self.config['dropout'])
|
394 |
|
|
|
493 |
def load_smi_ted(folder="./smi_ted_large",
|
494 |
ckpt_filename="smi-ted-Large_30.pt",
|
495 |
vocab_filename="bert_vocab_curated.txt",
|
496 |
+
n_output=1,
|
497 |
+
eval=False
|
498 |
):
|
499 |
tokenizer = MolTranBertTokenizer(os.path.join(folder, vocab_filename))
|
500 |
model = Smi_ted(tokenizer)
|
501 |
+
model.load_checkpoint(os.path.join(folder, ckpt_filename), n_output, eval=eval)
|
502 |
print('Vocab size:', len(tokenizer.vocab))
|
503 |
print(f'[FINETUNE MODE - {str(model)}]')
|
504 |
return model
|
smi-ted/finetune/smi_ted_light/load.py
CHANGED
@@ -318,7 +318,7 @@ class Net(nn.Module):
|
|
318 |
|
319 |
class MoLEncoder(nn.Module):
|
320 |
|
321 |
-
def __init__(self, config, n_vocab):
|
322 |
super(MoLEncoder, self).__init__()
|
323 |
|
324 |
# embeddings
|
@@ -337,7 +337,7 @@ class MoLEncoder(nn.Module):
|
|
337 |
# unless we do deterministic_eval here, we will have random outputs
|
338 |
feature_map=partial(GeneralizedRandomFeatures,
|
339 |
n_dims=config['num_feats'],
|
340 |
-
deterministic_eval=
|
341 |
activation='gelu'
|
342 |
)
|
343 |
self.blocks = builder.get()
|
@@ -361,7 +361,7 @@ class MoLDecoder(nn.Module):
|
|
361 |
class Smi_ted(nn.Module):
|
362 |
"""materials.smi-ted-Light 289M Parameters"""
|
363 |
|
364 |
-
def __init__(self, tokenizer, config=None):
|
365 |
super(Smi_ted, self).__init__()
|
366 |
|
367 |
# configuration
|
@@ -373,11 +373,11 @@ class Smi_ted(nn.Module):
|
|
373 |
|
374 |
# instantiate modules
|
375 |
if self.config:
|
376 |
-
self.encoder = MoLEncoder(self.config, self.n_vocab)
|
377 |
self.decoder = MoLDecoder(self.n_vocab, self.config['max_len'], self.config['n_embd'])
|
378 |
self.net = Net(self.config['n_embd'], n_output=self.config['n_output'], dropout=self.config['dropout'])
|
379 |
|
380 |
-
def load_checkpoint(self, ckpt_path, n_output):
|
381 |
# load checkpoint file
|
382 |
checkpoint = torch.load(ckpt_path, map_location=torch.device('cpu'))
|
383 |
|
@@ -388,7 +388,7 @@ class Smi_ted(nn.Module):
|
|
388 |
self._set_seed(self.config['seed'])
|
389 |
|
390 |
# instantiate modules
|
391 |
-
self.encoder = MoLEncoder(self.config, self.n_vocab)
|
392 |
self.decoder = MoLDecoder(self.n_vocab, self.max_len, self.n_embd)
|
393 |
self.net = Net(self.n_embd, n_output=self.config['n_output'] if 'n_output' in self.config else n_output, dropout=self.config['dropout'])
|
394 |
|
@@ -493,11 +493,12 @@ class Smi_ted(nn.Module):
|
|
493 |
def load_smi_ted(folder="./smi_ted_light",
|
494 |
ckpt_filename="smi-ted-Light_40.pt",
|
495 |
vocab_filename="bert_vocab_curated.txt",
|
496 |
-
n_output=1
|
|
|
497 |
):
|
498 |
tokenizer = MolTranBertTokenizer(os.path.join(folder, vocab_filename))
|
499 |
model = Smi_ted(tokenizer)
|
500 |
-
model.load_checkpoint(os.path.join(folder, ckpt_filename), n_output)
|
501 |
print('Vocab size:', len(tokenizer.vocab))
|
502 |
print(f'[FINETUNE MODE - {str(model)}]')
|
503 |
return model
|
|
|
318 |
|
319 |
class MoLEncoder(nn.Module):
|
320 |
|
321 |
+
def __init__(self, config, n_vocab, eval=False):
|
322 |
super(MoLEncoder, self).__init__()
|
323 |
|
324 |
# embeddings
|
|
|
337 |
# unless we do deterministic_eval here, we will have random outputs
|
338 |
feature_map=partial(GeneralizedRandomFeatures,
|
339 |
n_dims=config['num_feats'],
|
340 |
+
deterministic_eval=eval),
|
341 |
activation='gelu'
|
342 |
)
|
343 |
self.blocks = builder.get()
|
|
|
361 |
class Smi_ted(nn.Module):
|
362 |
"""materials.smi-ted-Light 289M Parameters"""
|
363 |
|
364 |
+
def __init__(self, tokenizer, config=None, eval=False):
|
365 |
super(Smi_ted, self).__init__()
|
366 |
|
367 |
# configuration
|
|
|
373 |
|
374 |
# instantiate modules
|
375 |
if self.config:
|
376 |
+
self.encoder = MoLEncoder(self.config, self.n_vocab, eval=eval)
|
377 |
self.decoder = MoLDecoder(self.n_vocab, self.config['max_len'], self.config['n_embd'])
|
378 |
self.net = Net(self.config['n_embd'], n_output=self.config['n_output'], dropout=self.config['dropout'])
|
379 |
|
380 |
+
def load_checkpoint(self, ckpt_path, n_output, eval=False):
|
381 |
# load checkpoint file
|
382 |
checkpoint = torch.load(ckpt_path, map_location=torch.device('cpu'))
|
383 |
|
|
|
388 |
self._set_seed(self.config['seed'])
|
389 |
|
390 |
# instantiate modules
|
391 |
+
self.encoder = MoLEncoder(self.config, self.n_vocab, eval=eval)
|
392 |
self.decoder = MoLDecoder(self.n_vocab, self.max_len, self.n_embd)
|
393 |
self.net = Net(self.n_embd, n_output=self.config['n_output'] if 'n_output' in self.config else n_output, dropout=self.config['dropout'])
|
394 |
|
|
|
493 |
def load_smi_ted(folder="./smi_ted_light",
|
494 |
ckpt_filename="smi-ted-Light_40.pt",
|
495 |
vocab_filename="bert_vocab_curated.txt",
|
496 |
+
n_output=1,
|
497 |
+
eval=False
|
498 |
):
|
499 |
tokenizer = MolTranBertTokenizer(os.path.join(folder, vocab_filename))
|
500 |
model = Smi_ted(tokenizer)
|
501 |
+
model.load_checkpoint(os.path.join(folder, ckpt_filename), n_output, eval=eval)
|
502 |
print('Vocab size:', len(tokenizer.vocab))
|
503 |
print(f'[FINETUNE MODE - {str(model)}]')
|
504 |
return model
|
smi-ted/finetune/trainers.py
CHANGED
@@ -14,6 +14,7 @@ import numpy as np
|
|
14 |
import random
|
15 |
import args
|
16 |
import os
|
|
|
17 |
from tqdm import tqdm
|
18 |
|
19 |
# Machine Learning
|
@@ -25,7 +26,7 @@ from utils import RMSE, sensitivity, specificity
|
|
25 |
class Trainer:
|
26 |
|
27 |
def __init__(self, raw_data, dataset_name, target, batch_size, hparams,
|
28 |
-
target_metric='rmse', seed=0, checkpoints_folder='./checkpoints', save_every_epoch=False, save_ckpt=True, device='cpu'):
|
29 |
# data
|
30 |
self.df_train = raw_data[0]
|
31 |
self.df_valid = raw_data[1]
|
@@ -39,6 +40,7 @@ class Trainer:
|
|
39 |
# config
|
40 |
self.target_metric = target_metric
|
41 |
self.seed = seed
|
|
|
42 |
self.checkpoints_folder = checkpoints_folder
|
43 |
self.save_every_epoch = save_every_epoch
|
44 |
self.save_ckpt = save_ckpt
|
@@ -115,28 +117,52 @@ class Trainer:
|
|
115 |
# update best loss
|
116 |
best_vloss = val_loss
|
117 |
|
118 |
-
def evaluate(self):
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
135 |
|
136 |
def _train_one_epoch(self):
|
137 |
raise NotImplementedError
|
138 |
|
139 |
-
def _validate_one_epoch(self, data_loader):
|
140 |
raise NotImplementedError
|
141 |
|
142 |
def _print_configuration(self):
|
@@ -203,9 +229,9 @@ class Trainer:
|
|
203 |
class TrainerRegressor(Trainer):
|
204 |
|
205 |
def __init__(self, raw_data, dataset_name, target, batch_size, hparams,
|
206 |
-
target_metric='rmse', seed=0, checkpoints_folder='./checkpoints', save_every_epoch=False, save_ckpt=True, device='cpu'):
|
207 |
super().__init__(raw_data, dataset_name, target, batch_size, hparams,
|
208 |
-
target_metric, seed, checkpoints_folder, save_every_epoch, save_ckpt, device)
|
209 |
|
210 |
def _train_one_epoch(self):
|
211 |
running_loss = 0.0
|
@@ -239,11 +265,13 @@ class TrainerRegressor(Trainer):
|
|
239 |
|
240 |
return running_loss / len(self.train_loader)
|
241 |
|
242 |
-
def _validate_one_epoch(self, data_loader):
|
243 |
data_targets = []
|
244 |
data_preds = []
|
245 |
running_loss = 0.0
|
246 |
|
|
|
|
|
247 |
with torch.no_grad():
|
248 |
for idx, data in enumerate(pbar := tqdm(data_loader)):
|
249 |
# Every data instance is an input + label pair
|
@@ -251,8 +279,8 @@ class TrainerRegressor(Trainer):
|
|
251 |
targets = targets.clone().detach().to(self.device)
|
252 |
|
253 |
# Make predictions for this batch
|
254 |
-
embeddings =
|
255 |
-
predictions =
|
256 |
|
257 |
# Compute the loss
|
258 |
loss = self.loss_fn(predictions, targets)
|
@@ -292,9 +320,9 @@ class TrainerRegressor(Trainer):
|
|
292 |
class TrainerClassifier(Trainer):
|
293 |
|
294 |
def __init__(self, raw_data, dataset_name, target, batch_size, hparams,
|
295 |
-
target_metric='roc-auc', seed=0, checkpoints_folder='./checkpoints', save_every_epoch=False, save_ckpt=True, device='cpu'):
|
296 |
super().__init__(raw_data, dataset_name, target, batch_size, hparams,
|
297 |
-
target_metric, seed, checkpoints_folder, save_every_epoch, save_ckpt, device)
|
298 |
|
299 |
def _train_one_epoch(self):
|
300 |
running_loss = 0.0
|
@@ -328,11 +356,13 @@ class TrainerClassifier(Trainer):
|
|
328 |
|
329 |
return running_loss / len(self.train_loader)
|
330 |
|
331 |
-
def _validate_one_epoch(self, data_loader):
|
332 |
data_targets = []
|
333 |
data_preds = []
|
334 |
running_loss = 0.0
|
335 |
|
|
|
|
|
336 |
with torch.no_grad():
|
337 |
for idx, data in enumerate(pbar := tqdm(data_loader)):
|
338 |
# Every data instance is an input + label pair
|
@@ -340,8 +370,8 @@ class TrainerClassifier(Trainer):
|
|
340 |
targets = targets.clone().detach().to(self.device)
|
341 |
|
342 |
# Make predictions for this batch
|
343 |
-
embeddings =
|
344 |
-
predictions =
|
345 |
|
346 |
# Compute the loss
|
347 |
loss = self.loss_fn(predictions, targets.long())
|
@@ -397,9 +427,9 @@ class TrainerClassifier(Trainer):
|
|
397 |
class TrainerClassifierMultitask(Trainer):
|
398 |
|
399 |
def __init__(self, raw_data, dataset_name, target, batch_size, hparams,
|
400 |
-
target_metric='roc-auc', seed=0, checkpoints_folder='./checkpoints', save_every_epoch=False, save_ckpt=True, device='cpu'):
|
401 |
super().__init__(raw_data, dataset_name, target, batch_size, hparams,
|
402 |
-
target_metric, seed, checkpoints_folder, save_every_epoch, save_ckpt, device)
|
403 |
|
404 |
def _prepare_data(self):
|
405 |
# normalize dataset
|
@@ -464,12 +494,14 @@ class TrainerClassifierMultitask(Trainer):
|
|
464 |
|
465 |
return running_loss / len(self.train_loader)
|
466 |
|
467 |
-
def _validate_one_epoch(self, data_loader):
|
468 |
data_targets = []
|
469 |
data_preds = []
|
470 |
data_masks = []
|
471 |
running_loss = 0.0
|
472 |
|
|
|
|
|
473 |
with torch.no_grad():
|
474 |
for idx, data in enumerate(pbar := tqdm(data_loader)):
|
475 |
# Every data instance is an input + label pair + mask
|
@@ -477,8 +509,8 @@ class TrainerClassifierMultitask(Trainer):
|
|
477 |
targets = targets.clone().detach().to(self.device)
|
478 |
|
479 |
# Make predictions for this batch
|
480 |
-
embeddings =
|
481 |
-
predictions =
|
482 |
predictions = predictions * target_masks.to(self.device)
|
483 |
|
484 |
# Compute the loss
|
|
|
14 |
import random
|
15 |
import args
|
16 |
import os
|
17 |
+
import shutil
|
18 |
from tqdm import tqdm
|
19 |
|
20 |
# Machine Learning
|
|
|
26 |
class Trainer:
|
27 |
|
28 |
def __init__(self, raw_data, dataset_name, target, batch_size, hparams,
|
29 |
+
target_metric='rmse', seed=0, smi_ted_version=None, checkpoints_folder='./checkpoints', save_every_epoch=False, save_ckpt=True, device='cpu'):
|
30 |
# data
|
31 |
self.df_train = raw_data[0]
|
32 |
self.df_valid = raw_data[1]
|
|
|
40 |
# config
|
41 |
self.target_metric = target_metric
|
42 |
self.seed = seed
|
43 |
+
self.smi_ted_version = smi_ted_version
|
44 |
self.checkpoints_folder = checkpoints_folder
|
45 |
self.save_every_epoch = save_every_epoch
|
46 |
self.save_ckpt = save_ckpt
|
|
|
117 |
# update best loss
|
118 |
best_vloss = val_loss
|
119 |
|
120 |
+
def evaluate(self, verbose=True):
|
121 |
+
if verbose:
|
122 |
+
print("\n=====Test Evaluation=====")
|
123 |
+
|
124 |
+
if self.smi_ted_version == 'v1':
|
125 |
+
import smi_ted_light.load as load
|
126 |
+
elif self.smi_ted_version == 'v2':
|
127 |
+
import smi_ted_large.load as load
|
128 |
+
else:
|
129 |
+
raise Exception('Please, specify the SMI-TED version: `v1` or `v2`.')
|
130 |
+
|
131 |
+
# copy vocabulary to checkpoint folder
|
132 |
+
if not os.path.exists(os.path.join(self.checkpoints_folder, 'bert_vocab_curated.txt')):
|
133 |
+
smi_ted_path = os.path.dirname(load.__file__)
|
134 |
+
shutil.copy(os.path.join(smi_ted_path, 'bert_vocab_curated.txt'), self.checkpoints_folder)
|
135 |
+
|
136 |
+
# load model for inference
|
137 |
+
model_inf = load.load_smi_ted(
|
138 |
+
folder=self.checkpoints_folder,
|
139 |
+
ckpt_filename=self.last_filename,
|
140 |
+
eval=True,
|
141 |
+
).to(self.device)
|
142 |
+
|
143 |
+
# set model evaluation mode
|
144 |
+
model_inf.eval()
|
145 |
+
|
146 |
+
# evaluate on test set
|
147 |
+
tst_preds, tst_loss, tst_metrics = self._validate_one_epoch(self.test_loader, model_inf)
|
148 |
+
|
149 |
+
if verbose:
|
150 |
+
# show metrics
|
151 |
+
for m in tst_metrics.keys():
|
152 |
+
print(f"[TEST] Evaluation {m.upper()}: {round(tst_metrics[m], 4)}")
|
153 |
+
|
154 |
+
# save predictions
|
155 |
+
pd.DataFrame(tst_preds).to_csv(
|
156 |
+
os.path.join(
|
157 |
+
self.checkpoints_folder,
|
158 |
+
f'{self.dataset_name}_{self.target if isinstance(self.target, str) else self.target[0]}_predict_test_seed{self.seed}.csv'),
|
159 |
+
index=False
|
160 |
+
)
|
161 |
|
162 |
def _train_one_epoch(self):
|
163 |
raise NotImplementedError
|
164 |
|
165 |
+
def _validate_one_epoch(self, data_loader, model=None):
|
166 |
raise NotImplementedError
|
167 |
|
168 |
def _print_configuration(self):
|
|
|
229 |
class TrainerRegressor(Trainer):
|
230 |
|
231 |
def __init__(self, raw_data, dataset_name, target, batch_size, hparams,
|
232 |
+
target_metric='rmse', seed=0, smi_ted_version=None, checkpoints_folder='./checkpoints', save_every_epoch=False, save_ckpt=True, device='cpu'):
|
233 |
super().__init__(raw_data, dataset_name, target, batch_size, hparams,
|
234 |
+
target_metric, seed, smi_ted_version, checkpoints_folder, save_every_epoch, save_ckpt, device)
|
235 |
|
236 |
def _train_one_epoch(self):
|
237 |
running_loss = 0.0
|
|
|
265 |
|
266 |
return running_loss / len(self.train_loader)
|
267 |
|
268 |
+
def _validate_one_epoch(self, data_loader, model=None):
|
269 |
data_targets = []
|
270 |
data_preds = []
|
271 |
running_loss = 0.0
|
272 |
|
273 |
+
model = self.model if model is None else model
|
274 |
+
|
275 |
with torch.no_grad():
|
276 |
for idx, data in enumerate(pbar := tqdm(data_loader)):
|
277 |
# Every data instance is an input + label pair
|
|
|
279 |
targets = targets.clone().detach().to(self.device)
|
280 |
|
281 |
# Make predictions for this batch
|
282 |
+
embeddings = model.extract_embeddings(smiles).to(self.device)
|
283 |
+
predictions = model.net(embeddings).squeeze()
|
284 |
|
285 |
# Compute the loss
|
286 |
loss = self.loss_fn(predictions, targets)
|
|
|
320 |
class TrainerClassifier(Trainer):
|
321 |
|
322 |
def __init__(self, raw_data, dataset_name, target, batch_size, hparams,
|
323 |
+
target_metric='roc-auc', seed=0, smi_ted_version=None, checkpoints_folder='./checkpoints', save_every_epoch=False, save_ckpt=True, device='cpu'):
|
324 |
super().__init__(raw_data, dataset_name, target, batch_size, hparams,
|
325 |
+
target_metric, seed, smi_ted_version, checkpoints_folder, save_every_epoch, save_ckpt, device)
|
326 |
|
327 |
def _train_one_epoch(self):
|
328 |
running_loss = 0.0
|
|
|
356 |
|
357 |
return running_loss / len(self.train_loader)
|
358 |
|
359 |
+
def _validate_one_epoch(self, data_loader, model=None):
|
360 |
data_targets = []
|
361 |
data_preds = []
|
362 |
running_loss = 0.0
|
363 |
|
364 |
+
model = self.model if model is None else model
|
365 |
+
|
366 |
with torch.no_grad():
|
367 |
for idx, data in enumerate(pbar := tqdm(data_loader)):
|
368 |
# Every data instance is an input + label pair
|
|
|
370 |
targets = targets.clone().detach().to(self.device)
|
371 |
|
372 |
# Make predictions for this batch
|
373 |
+
embeddings = model.extract_embeddings(smiles).to(self.device)
|
374 |
+
predictions = model.net(embeddings).squeeze()
|
375 |
|
376 |
# Compute the loss
|
377 |
loss = self.loss_fn(predictions, targets.long())
|
|
|
427 |
class TrainerClassifierMultitask(Trainer):
|
428 |
|
429 |
def __init__(self, raw_data, dataset_name, target, batch_size, hparams,
|
430 |
+
target_metric='roc-auc', seed=0, smi_ted_version=None, checkpoints_folder='./checkpoints', save_every_epoch=False, save_ckpt=True, device='cpu'):
|
431 |
super().__init__(raw_data, dataset_name, target, batch_size, hparams,
|
432 |
+
target_metric, seed, smi_ted_version, checkpoints_folder, save_every_epoch, save_ckpt, device)
|
433 |
|
434 |
def _prepare_data(self):
|
435 |
# normalize dataset
|
|
|
494 |
|
495 |
return running_loss / len(self.train_loader)
|
496 |
|
497 |
+
def _validate_one_epoch(self, data_loader, model=None):
|
498 |
data_targets = []
|
499 |
data_preds = []
|
500 |
data_masks = []
|
501 |
running_loss = 0.0
|
502 |
|
503 |
+
model = self.model if model is None else model
|
504 |
+
|
505 |
with torch.no_grad():
|
506 |
for idx, data in enumerate(pbar := tqdm(data_loader)):
|
507 |
# Every data instance is an input + label pair + mask
|
|
|
509 |
targets = targets.clone().detach().to(self.device)
|
510 |
|
511 |
# Make predictions for this batch
|
512 |
+
embeddings = model.extract_embeddings(smiles).to(self.device)
|
513 |
+
predictions = model.net(embeddings, multitask=True).squeeze()
|
514 |
predictions = predictions * target_masks.to(self.device)
|
515 |
|
516 |
# Compute the loss
|