|
from transformers import pipeline, M2M100ForConditionalGeneration, M2M100Tokenizer,QuantoConfig |
|
from typing import Dict, List, Any |
|
|
|
class EndpointHandler(): |
|
def __init__(self, path=""): |
|
|
|
model = M2M100ForConditionalGeneration.from_pretrained(path) |
|
tokenizer = M2M100Tokenizer.from_pretrained(path) |
|
|
|
self.pipeline = pipeline("translation", model=model, tokenizer=tokenizer) |
|
|
|
|
|
def __call__(self, data: Any) -> List[List[Dict[str, float]]]: |
|
""" |
|
Args: |
|
data (:obj:): |
|
includes the input data and the parameters for the inference. |
|
Return: |
|
A :obj:`list`:. The object returned should be a list of one list like [[{"label": 0.9939950108528137}]] containing : |
|
- "label": A string representing what the label/class is. There can be multiple labels. |
|
- "score": A score between 0 and 1 describing how confident the model is for this label/class. |
|
""" |
|
text = data.get("text", data) |
|
lang = data.get("langId",data) |
|
encoded = tokenizer(text, return_tensors="pt") |
|
generated_tokens = model.generate(**encoded, forced_bos_token_id=tokenizer.get_lang_id(lang)) |
|
result = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0] |
|
return {'transdlated':result} |