ikeno-ada's picture
Create handler.py
35ba4de verified
raw
history blame
1.4 kB
from transformers import pipeline, M2M100ForConditionalGeneration, M2M100Tokenizer,QuantoConfig
from typing import Dict, List, Any
class EndpointHandler():
def __init__(self, path=""):
# load the optimized model
model = M2M100ForConditionalGeneration.from_pretrained(path)
tokenizer = M2M100Tokenizer.from_pretrained(path)
# create inference pipeline
self.pipeline = pipeline("translation", model=model, tokenizer=tokenizer)
def __call__(self, data: Any) -> List[List[Dict[str, float]]]:
"""
Args:
data (:obj:):
includes the input data and the parameters for the inference.
Return:
A :obj:`list`:. The object returned should be a list of one list like [[{"label": 0.9939950108528137}]] containing :
- "label": A string representing what the label/class is. There can be multiple labels.
- "score": A score between 0 and 1 describing how confident the model is for this label/class.
"""
text = data.get("text", data)
lang = data.get("langId",data)
encoded = tokenizer(text, return_tensors="pt")
generated_tokens = model.generate(**encoded, forced_bos_token_id=tokenizer.get_lang_id(lang))
result = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0]
return {'transdlated':result}