metadata
tags:
- merge
- mergekit
- lazymergekit
- athirdpath/Orca-2-13b-Alpaca-Uncensored
- rombodawg/LosslessMegaCoder-llama2-13b-mini
base_model:
- athirdpath/Orca-2-13b-Alpaca-Uncensored
- rombodawg/LosslessMegaCoder-llama2-13b-mini
AlpacaCoder-OrcaLlamaFusion-13b
AlpacaCoder-OrcaLlamaFusion-13b is a merge of the following models using LazyMergekit:
🧩 Configuration
slices:
- sources:
- model: athirdpath/Orca-2-13b-Alpaca-Uncensored
layer_range: [0, 40]
- model: rombodawg/LosslessMegaCoder-llama2-13b-mini
layer_range: [0, 40]
# or, the equivalent models: syntax:
# models:
# - model: athirdpath/Orca-2-13b-Alpaca-Uncensored
# - model: rombodawg/LosslessMegaCoder-llama2-13b-mini
merge_method: slerp
base_model: athirdpath/Orca-2-13b-Alpaca-Uncensored
parameters:
t:
- filter: self_attn
value: [0, 0.5, 0.3, 0.7, 1]
- filter: mlp
value: [1, 0.5, 0.7, 0.3, 0]
- value: 0.5 # fallback for rest of tensors
dtype: float16
💻 Usage
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "ilevytate/AlpacaCoder-OrcaLlamaFusion-13b"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])