|
--- |
|
library_name: transformers |
|
language: |
|
- ko |
|
license: mit |
|
base_model: openai/whisper-large-v3-turbo |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- Bingsu/zeroth-korean |
|
- mozilla-foundation/common_voice_17_0 |
|
metrics: |
|
- wer |
|
model-index: |
|
- name: Whisper large v3 turbo Korean - imTak |
|
results: |
|
- task: |
|
name: Automatic Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: Zeroth-Korean |
|
type: Bingsu/zeroth-korean |
|
args: 'config: ko, split: test' |
|
metrics: |
|
- name: Wer |
|
type: wer |
|
value: 5.270290618882698 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# Whisper large v3 turbo Korean - imTak |
|
|
|
This model is a fine-tuned version of [imTak/whisper_large_v3_ko_ft](https://huggingface.co/imTak/whisper_large_v3_ko_ft) on the Zeroth-Korean dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0670 |
|
- Wer: 5.2703 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 500 |
|
- training_steps: 4000 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | |
|
|:-------------:|:------:|:----:|:---------------:|:------:| |
|
| 0.1068 | 0.7184 | 1000 | 0.1216 | 8.6132 | |
|
| 0.0388 | 1.4368 | 2000 | 0.0905 | 5.3606 | |
|
| 0.0089 | 2.1552 | 3000 | 0.0707 | 4.7282 | |
|
| 0.0082 | 2.8736 | 4000 | 0.0670 | 5.2703 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.45.0 |
|
- Pytorch 2.5.1+cu124 |
|
- Datasets 3.1.0 |
|
- Tokenizers 0.20.3 |
|
|