nel-mgenre-multilingual / generic_nel.py
Emanuela Boros
add confidence
0990522
raw
history blame
4.07 kB
from transformers import Pipeline
import nltk
import torch
nltk.download("averaged_perceptron_tagger")
nltk.download("averaged_perceptron_tagger_eng")
import requests
def get_wikipedia_page_props(input_str: str):
"""
Retrieves the QID for a given Wikipedia page name from the specified language Wikipedia.
If the request fails, it falls back to using the OpenRefine Wikidata API.
Args:
input_str (str): The input string in the format "page_name >> language".
Returns:
str: The QID or "NIL" if the QID is not found.
"""
try:
# Preprocess the input string
page_name, language = input_str.split(" >> ")
page_name = page_name.strip()
language = language.strip()
except ValueError:
return "Invalid input format. Use 'page_name >> language'."
wikipedia_url = f"https://{language}.wikipedia.org/w/api.php"
wikipedia_params = {
"action": "query",
"prop": "pageprops",
"format": "json",
"titles": page_name,
}
qid = "NIL"
try:
# Attempt to fetch from Wikipedia API
response = requests.get(wikipedia_url, params=wikipedia_params)
response.raise_for_status()
data = response.json()
if "pages" in data["query"]:
page_id = list(data["query"]["pages"].keys())[0]
if "pageprops" in data["query"]["pages"][page_id]:
page_props = data["query"]["pages"][page_id]["pageprops"]
if "wikibase_item" in page_props:
return page_props["wikibase_item"]
else:
return qid
else:
return qid
except Exception as e:
return qid
def get_wikipedia_title(qid, language="en"):
url = f"https://www.wikidata.org/w/api.php"
params = {
"action": "wbgetentities",
"format": "json",
"ids": qid,
"props": "sitelinks/urls",
"sitefilter": f"{language}wiki",
}
response = requests.get(url, params=params)
data = response.json()
try:
title = data["entities"][qid]["sitelinks"][f"{language}wiki"]["title"]
url = data["entities"][qid]["sitelinks"][f"{language}wiki"]["url"]
return title, url
except KeyError:
return "NIL", "None"
class NelPipeline(Pipeline):
def _sanitize_parameters(self, **kwargs):
preprocess_kwargs = {}
if "text" in kwargs:
preprocess_kwargs["text"] = kwargs["text"]
return preprocess_kwargs, {}, {}
def preprocess(self, text, **kwargs):
outputs = self.model.generate(
**self.tokenizer([text], return_tensors="pt"),
num_beams=5,
num_return_sequences=5,
max_new_tokens=30,
)
# print(outputs)
# token_ids, scores = outputs.sequences, outputs.sequences_scores
# scores_tensor = scores.clone().detach()
# probabilities = torch.exp(scores_tensor)
# percentages = (probabilities * 100.0).cpu().numpy().tolist()
wikipedia_predictions = self.tokenizer.batch_decode(
outputs, skip_special_tokens=True
)
# print(f"Decoded: {wikipedia_predictons}")np.round(percentages[i], 2)
return wikipedia_predictions, [0, 0, 0, 0, 0]
def _forward(self, inputs):
return inputs
def postprocess(self, outputs, **kwargs):
"""
Postprocess the outputs of the model
:param outputs:
:param kwargs:
:return:
"""
wikipedia_predictions, percentages = outputs
results = []
for idx, wikipedia_name in enumerate(outputs):
# Get QID
qid = get_wikipedia_page_props(wikipedia_name)
# print(f"{wikipedia_name} -- QID: {qid}")
# Get Wikipedia title and URL
title, url = get_wikipedia_title(qid)
results.append(
{"title": title, "qid": qid, "url": url, "score": percentages[idx]}
)
return results