gmonsoon's picture
Adding Evaluation Results (#1)
8c65bc1 verified
metadata
language:
  - id
  - en
license: cc-by-nc-4.0
tags:
  - merge
  - mergekit
model-index:
  - name: MiaLatte-Indo-Mistral-7b
    results:
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: AI2 Reasoning Challenge (25-Shot)
          type: ai2_arc
          config: ARC-Challenge
          split: test
          args:
            num_few_shot: 25
        metrics:
          - type: acc_norm
            value: 66.55
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=indischepartij/MiaLatte-Indo-Mistral-7b
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: HellaSwag (10-Shot)
          type: hellaswag
          split: validation
          args:
            num_few_shot: 10
        metrics:
          - type: acc_norm
            value: 85.23
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=indischepartij/MiaLatte-Indo-Mistral-7b
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MMLU (5-Shot)
          type: cais/mmlu
          config: all
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 63.93
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=indischepartij/MiaLatte-Indo-Mistral-7b
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: TruthfulQA (0-shot)
          type: truthful_qa
          config: multiple_choice
          split: validation
          args:
            num_few_shot: 0
        metrics:
          - type: mc2
            value: 56.04
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=indischepartij/MiaLatte-Indo-Mistral-7b
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: Winogrande (5-shot)
          type: winogrande
          config: winogrande_xl
          split: validation
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 80.35
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=indischepartij/MiaLatte-Indo-Mistral-7b
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: GSM8k (5-shot)
          type: gsm8k
          config: main
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 55.04
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=indischepartij/MiaLatte-Indo-Mistral-7b
          name: Open LLM Leaderboard

image/png

MiaLatte-Indo-Mistral-7b

MiaLatte is a derivative model of OpenMia, which is able to answer everyday questions specifically in Bahasa Indonesia (Indonesia Language).

some of GGUF: https://huggingface.co/indischepartij/MiaLatte-Indo-Mistral-7b-GGUF

Examples

image/png image/png image/png

MiaLatte-Indo-Mistral-7b is a merge of the following models using MergeKit:

πŸͺ„ Open LLM Benchmark

image/png

🧩 Configuration

slices:
models:
  - model: indischepartij/OpenMia-Indo-Mistral-7b-v2
    parameters:
      density: 0.50
      weight: 0.35
  - model: Obrolin/Kesehatan-7B-v0.1
    parameters:
      density: 0.50
      weight: 0.35
  - model: FelixChao/WestSeverus-7B-DPO-v2
    parameters:
      density: 0.50
      weight: 0.30
merge_method: dare_ties
base_model: indischepartij/OpenMia-Indo-Mistral-7b-v2
parameters:
  int8_mask: true
dtype: float16

πŸ’» Usage

!pip install -qU transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "indischepartij/MiaLatte-Indo-Mistral-7b"
messages = [{"role": "user", "content": "Apa jenis skincare yang cocok untuk kulit berjerawat??"}]

tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 67.86
AI2 Reasoning Challenge (25-Shot) 66.55
HellaSwag (10-Shot) 85.23
MMLU (5-Shot) 63.93
TruthfulQA (0-shot) 56.04
Winogrande (5-shot) 80.35
GSM8k (5-shot) 55.04