|
--- |
|
language: |
|
- br |
|
license: apache-2.0 |
|
tags: |
|
- automatic-speech-recognition |
|
- mozilla-foundation/common_voice_8_0 |
|
- generated_from_trainer |
|
- br |
|
- robust-speech-event |
|
- model_for_talk |
|
- hf-asr-leaderboard |
|
datasets: |
|
- mozilla-foundation/common_voice_8_0 |
|
model-index: |
|
- name: XLS-R-300M - Breton |
|
results: |
|
- task: |
|
name: Automatic Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: Common Voice 8 |
|
type: mozilla-foundation/common_voice_8_0 |
|
args: br |
|
metrics: |
|
- name: Test WER |
|
type: wer |
|
value: 54.855 |
|
- name: Test CER |
|
type: cer |
|
value: 17.865 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# XLS-R-300M - Breton |
|
|
|
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - BR dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: NA |
|
- Wer: NA |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
|
|
### Training results |
|
|
|
NA |
|
|
|
### Framework versions |
|
|
|
- Transformers 4.16.0.dev0 |
|
- Pytorch 1.10.0+cu102 |
|
- Datasets 1.17.1.dev0 |
|
- Tokenizers 0.10.3 |
|
|
|
#### Evaluation Commands |
|
|
|
1. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test` |
|
|
|
```bash |
|
python eval.py --model_id infinitejoy/wav2vec2-large-xls-r-300m-breton-cv8 --dataset mozilla-foundation/common_voice_8_0 --config br --split test |
|
``` |
|
|
|
2. To evaluate on `speech-recognition-community-v2/dev_data` |
|
|
|
```bash |
|
python eval.py --model_id infinitejoy/wav2vec2-large-xls-r-300m-breton-cv8 --dataset speech-recognition-community-v2/dev_data --config br --split validation --chunk_length_s 5.0 --stride_length_s 1.0 |
|
``` |
|
|
|
### Inference With LM |
|
|
|
```python |
|
import torch |
|
from datasets import load_dataset |
|
from transformers import AutoModelForCTC, AutoProcessor |
|
import torchaudio.functional as F |
|
|
|
|
|
model_id = "infinitejoy/wav2vec2-large-xls-r-300m-breton-cv8" |
|
|
|
sample_iter = iter(load_dataset("mozilla-foundation/common_voice_8_0", "br", split="test", streaming=True, use_auth_token=True)) |
|
|
|
sample = next(sample_iter) |
|
resampled_audio = F.resample(torch.tensor(sample["audio"]["array"]), 48_000, 16_000).numpy() |
|
|
|
model = AutoModelForCTC.from_pretrained(model_id) |
|
processor = AutoProcessor.from_pretrained(model_id) |
|
|
|
input_values = processor(resampled_audio, return_tensors="pt").input_values |
|
|
|
with torch.no_grad(): |
|
logits = model(input_values).logits |
|
|
|
transcription = processor.batch_decode(logits.numpy()).text |
|
|
|
``` |
|
|
|
### Eval results on Common Voice 7 "test" (WER): |
|
|
|
NA |
|
|
|
|