wav2vec2-large-xls-r-300m-greek

This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - EL dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6592
  • Wer: 0.4564

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 100.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
3.0928 4.42 500 3.0804 1.0073
1.4505 8.85 1000 0.9038 0.7330
1.2207 13.27 1500 0.7375 0.6045
1.0695 17.7 2000 0.7119 0.5441
1.0104 22.12 2500 0.6069 0.5296
0.9299 26.55 3000 0.6168 0.5206
0.8588 30.97 3500 0.6382 0.5171
0.7942 35.4 4000 0.6048 0.4988
0.7808 39.82 4500 0.6730 0.5084
0.743 44.25 5000 0.6749 0.5012
0.6652 48.67 5500 0.6491 0.4735
0.6386 53.1 6000 0.6928 0.4954
0.5945 57.52 6500 0.6359 0.4798
0.5561 61.95 7000 0.6409 0.4799
0.5464 66.37 7500 0.6452 0.4691
0.5119 70.8 8000 0.6376 0.4657
0.474 75.22 8500 0.6541 0.4700
0.45 79.65 9000 0.6374 0.4571
0.4315 84.07 9500 0.6568 0.4625
0.3967 88.5 10000 0.6636 0.4605
0.3937 92.92 10500 0.6537 0.4597
0.3788 97.35 11000 0.6614 0.4589

Framework versions

  • Transformers 4.16.0.dev0
  • Pytorch 1.10.1+cu102
  • Datasets 1.17.1.dev0
  • Tokenizers 0.11.0
Downloads last month
13
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train infinitejoy/wav2vec2-large-xls-r-300m-greek

Evaluation results