metadata
base_model:
- TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T
datasets:
- HuggingFaceH4/ultrachat_200k
library_name: transformers
tags:
- ultrachat
Model Card for Model ID
This is quantized adapters trained on the Ultrachat 200k dataset for the TinyLlama-1.1B Intermediate Step 1431k 3T model.
adapter_name = 'iqbalamo93/TinyLlama-1.1B-intermediate-1431k-3T-adapters-ultrachat'
Model Details
Base model was quantized using BitsAndBytes
from bitsandbytes import BitsAndBytesConfig
bnb_config = BitsAndBytesConfig(
load_in_4bit=True, # Use 4-bit precision model loading
bnb_4bit_quant_type="nf4", # Quantization type
bnb_4bit_compute_dtype="float16", # Compute data type
bnb_4bit_use_double_quant=True # Apply nested quantization
)
Model Description
This is quantized adapters trained on the Ultrachat 200k dataset for the TinyLlama-1.1B Intermediate Step 1431k 3T model.
- Finetuned from model : TinyLlama
How to use
Method 1: Direct loading via AutoPeftModel
from peft import PeftModel, AutoPeftModelForCausalLM
from transformers import pipeline, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("TinyLlama/TinyLlama-1.1B-Chat-v1.0")
adapter_name = 'iqbalamo93/TinyLlama-1.1B-intermediate-1431k-3T-adapters-ultrachat'
model = AutoPeftModelForCausalLM.from_pretrained(
adapter_name,
device_map="auto"
)
model = model.merge_and_unload()
prompt = """<|user|>
Tell me something about Large Language Models.</s>
<|assistant|>
"""
pipe = pipeline(task="text-generation", model=model, tokenizer=tokenizer)
print(pipe(prompt)[0]["generated_text"])
Method 2: direct loading AutoModel
model = AutoModelForCausalLM.from_pretrained(adapter_name,
device_map="auto"
)
prompt = """<|user|>
Tell me something about Large Language Models.</s>
<|assistant|>
"""
pipe = pipeline(task="text-generation", model=model, tokenizer=tokenizer)
print(pipe(prompt)[0]["generated_text"])
Method 2: Merging with base mode explicitly
todo