|
--- |
|
base_model: |
|
- meta-llama/Llama-3.1-8B-Instruct |
|
license: llama3.1 |
|
language: |
|
- gl |
|
metrics: |
|
- bleu |
|
- rouge |
|
model-index: |
|
- name: Llama-3.1-8B-Instruct-Galician |
|
results: |
|
- task: |
|
type: text-generation |
|
dataset: |
|
name: alpaca_data_galician |
|
type: alpaca_data_galician |
|
metrics: |
|
- name: bleu |
|
type: bleu-4 |
|
value: 23.13 |
|
- name: rouge |
|
type: rouge-l |
|
value: 21.84 |
|
pipeline_tag: text-generation |
|
library_name: transformers |
|
--- |
|
|
|
# Llama-3.1-8B-Instruct-Galician |
|
|
|
This model is a continued pretraining version of [meta-llama/Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct) on the [CorpusNós](https://zenodo.org/records/11655219) dataset. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
|
|
<!-- Provide a longer summary of what this model is. --> |
|
|
|
|
|
|
|
- **Developed by:** [UDC Information Retrieval Lab (IRLab)](https://huggingface.co/irlab-udc) |
|
- **Model type:** [More Information Needed] |
|
- **Language(s) (NLP):** Multilingual, adapted to Galician |
|
- **License:** llama3.1 |
|
- **Finetuned from model:** [meta-llama/Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct) |
|
|
|
### Model Sources |
|
|
|
- **Repository:** [Adapting Large Language Models for Underrepresented Languages](https://gitlab.irlab.org/eliseo.bao/xovetic-llms-underrepresented-languages) |
|
- **Paper:** _Coming soon_ |
|
|
|
## How to Get Started with the Model |
|
|
|
Use the code below to get started with the model. |
|
|
|
[More Information Needed] |
|
|
|
## Training Details |
|
|
|
[More Information Needed] |
|
|
|
### Training Data |
|
|
|
[More Information Needed] |
|
|
|
### Training Procedure |
|
|
|
[More Information Needed] |
|
|
|
#### Training Hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0001 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 1 |
|
- seed: 42 |
|
- distributed_type: multi-GPU |
|
- num_devices: 4 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 256 |
|
- total_eval_batch_size: 4 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 1.0 |
|
|
|
#### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:------:|:----:|:---------------:| |
|
| 2.0606 | 0.1682 | 900 | 2.0613 | |
|
| 1.9898 | 0.3363 | 1800 | 1.9929 | |
|
| 1.9847 | 0.5045 | 2700 | 1.9613 | |
|
| 1.9577 | 0.6726 | 3600 | 1.9445 | |
|
| 1.9287 | 0.8408 | 4500 | 1.9368 | |
|
|
|
## Environmental Impact |
|
|
|
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). |
|
|
|
- **Hardware Type:** 4x NVIDIA A100 SXM4 80 GB (TDP of 400W) |
|
- **Hours used:** 60 |
|
- **Cloud Provider:** Private infrastructure |
|
- **Carbon Emitted:** 10.37 kgCO$_2$eq |
|
|
|
#### Software |
|
|
|
- PEFT 0.12.0 |
|
- Transformers 4.44.2 |
|
- Pytorch 2.4.0+cu121 |
|
- Datasets 2.21.0 |
|
- Tokenizers 0.19.1 |
|
|
|
## Citation |
|
|
|
**BibTeX:** |
|
|
|
_Coming soon_ |