itlwas
Upload README.md with huggingface_hub
656284f verified
|
raw
history blame
4.31 kB
metadata
language:
  - en
  - zh
  - id
  - th
  - vi
  - ms
  - lo
datasets:
  - cerebras/SlimPajama-627B
  - Skywork/SkyPile-150B
  - allenai/MADLAD-400
  - cc100
tags:
  - multilingual
  - sea
  - sailor
  - llama-cpp
  - gguf-my-repo
license: apache-2.0
base_model: sail/Sailor-4B
inference: false
model-index:
  - name: Sailor-4B
    results:
      - task:
          type: text-generation
        dataset:
          name: XQuAD-Thai
          type: XQuAD-Thai
        metrics:
          - type: EM (3-Shot)
            value: 46.82
            name: EM (3-Shot)
          - type: F1 (3-Shot)
            value: 63.34
            name: F1 (3-Shot)
      - task:
          type: text-generation
        dataset:
          name: TyDiQA-Indonesian
          type: TyDiQA-Indonesian
        metrics:
          - type: EM (3-Shot)
            value: 53.98
            name: EM (3-Shot)
          - type: F1 (3-Shot)
            value: 73.48
            name: F1 (3-Shot)
      - task:
          type: text-generation
        dataset:
          name: XQuAD-Vietnamese
          type: XQuAD-Vietnamese
        metrics:
          - type: EM (3-Shot)
            value: 47.65
            name: EM (3-Shot)
          - type: F1 (3-Shot)
            value: 67.09
            name: F1 (3-Shot)
      - task:
          type: text-generation
        dataset:
          name: XCOPA-Thai
          type: XCOPA-Thai
        metrics:
          - type: EM (3-Shot)
            value: 53.4
            name: EM (3-Shot)
      - task:
          type: text-generation
        dataset:
          name: XCOPA-Indonesian
          type: XCOPA-Indonesian
        metrics:
          - type: EM (3-Shot)
            value: 69.2
            name: EM (3-Shot)
      - task:
          type: text-generation
        dataset:
          name: XCOPA-Vietnamese
          type: XCOPA-Vietnamese
        metrics:
          - type: EM (3-Shot)
            value: 68.2
            name: EM (3-Shot)
      - task:
          type: text-generation
        dataset:
          name: M3Exam-Thai
          type: M3Exam-Thai
        metrics:
          - type: EM (3-Shot)
            value: 27.88
            name: EM (3-Shot)
      - task:
          type: text-generation
        dataset:
          name: M3Exam-Indonesian
          type: M3Exam-Indonesian
        metrics:
          - type: EM (3-Shot)
            value: 31.27
            name: EM (3-Shot)
      - task:
          type: text-generation
        dataset:
          name: M3Exam-Vietnamese
          type: M3Exam-Vietnamese
        metrics:
          - type: EM (3-Shot)
            value: 40.69
            name: EM (3-Shot)
      - task:
          type: text-generation
        dataset:
          name: BELEBELE-Thai
          type: BELEBELE-Thai
        metrics:
          - type: EM (3-Shot)
            value: 36.11
            name: EM (3-Shot)
      - task:
          type: text-generation
        dataset:
          name: BELEBELE-Indonesian
          type: BELEBELE-Indonesian
        metrics:
          - type: EM (3-Shot)
            value: 41.33
            name: EM (3-Shot)
      - task:
          type: text-generation
        dataset:
          name: BELEBELE-Vietnamese
          type: BELEBELE-Vietnamese
        metrics:
          - type: EM (3-Shot)
            value: 38.89
            name: EM (3-Shot)

AIronMind/Sailor-4B-Q4_K_M-GGUF

This model was converted to GGUF format from sail/Sailor-4B using llama.cpp via the ggml.ai's GGUF-my-repo space. Refer to the original model card for more details on the model.

Use with llama.cpp

Install llama.cpp through brew (works on Mac and Linux)

brew install llama.cpp

Invoke the llama.cpp server or the CLI.

CLI:

llama-cli --hf-repo AIronMind/Sailor-4B-Q4_K_M-GGUF --hf-file sailor-4b-q4_k_m.gguf -p "The meaning to life and the universe is"

Server:

llama-server --hf-repo AIronMind/Sailor-4B-Q4_K_M-GGUF --hf-file sailor-4b-q4_k_m.gguf -c 2048

Note: You can also use this checkpoint directly through the usage steps listed in the Llama.cpp repo as well.

Step 1: Clone llama.cpp from GitHub.

git clone https://github.com/ggerganov/llama.cpp

Step 2: Move into the llama.cpp folder and build it with LLAMA_CURL=1 flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).

cd llama.cpp && LLAMA_CURL=1 make

Step 3: Run inference through the main binary.

./llama-cli --hf-repo AIronMind/Sailor-4B-Q4_K_M-GGUF --hf-file sailor-4b-q4_k_m.gguf -p "The meaning to life and the universe is"

or

./llama-server --hf-repo AIronMind/Sailor-4B-Q4_K_M-GGUF --hf-file sailor-4b-q4_k_m.gguf -c 2048