finetuned-fake-food

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the indian_food_images dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4855
  • Accuracy: 0.8548

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 4
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • num_epochs: 15
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.6061 1.0 176 0.5937 0.6855
0.481 2.0 352 0.5138 0.8226
0.5522 3.0 528 0.4973 0.8065
0.4092 4.0 704 0.5557 0.7903
0.4882 5.0 880 0.4998 0.7984
0.4442 6.0 1056 0.4647 0.8387
0.5749 7.0 1232 0.4464 0.8306
0.4529 8.0 1408 0.5366 0.8065
0.5287 9.0 1584 0.4633 0.8387
0.3821 10.0 1760 0.4983 0.8387
0.2409 11.0 1936 0.4855 0.8548
0.2025 12.0 2112 0.5102 0.8387
0.2045 13.0 2288 0.4942 0.8387
0.4097 14.0 2464 0.4954 0.8387
0.5798 15.0 2640 0.4941 0.8387

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.1
  • Tokenizers 0.19.1
Downloads last month
8
Safetensors
Model size
85.8M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for itsLeen/finetuned-fake-food

Finetuned
(1789)
this model