Goader_liberta-large-deprel

This model is a fine-tuned version of Goader/liberta-large on the universal_dependencies dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5901
  • : {'precision': 0.42857142857142855, 'recall': 0.21428571428571427, 'f1': 0.2857142857142857, 'number': 14}
  • Arataxis: {'precision': 0.5066666666666667, 'recall': 0.3486238532110092, 'f1': 0.41304347826086957, 'number': 109}
  • Arataxis:discourse: {'precision': 0.4117647058823529, 'recall': 0.3684210526315789, 'f1': 0.3888888888888889, 'number': 19}
  • Arataxis:rel: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 7}
  • Ark: {'precision': 0.8214285714285714, 'recall': 0.7777777777777778, 'f1': 0.7990074441687344, 'number': 207}
  • Ase: {'precision': 0.8921023359288098, 'recall': 0.8044132397191575, 'f1': 0.8459915611814346, 'number': 997}
  • Bj: {'precision': 0.8446389496717724, 'recall': 0.7524366471734892, 'f1': 0.7958762886597938, 'number': 513}
  • Bl: {'precision': 0.8267090620031796, 'recall': 0.7084468664850136, 'f1': 0.7630227439471754, 'number': 734}
  • C: {'precision': 0.8328690807799443, 'recall': 0.7310513447432763, 'f1': 0.7786458333333331, 'number': 409}
  • Cl: {'precision': 0.7894736842105263, 'recall': 0.3409090909090909, 'f1': 0.4761904761904762, 'number': 44}
  • Cl:adv: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 4}
  • Cl:relcl: {'precision': 0.7611940298507462, 'recall': 0.7083333333333334, 'f1': 0.7338129496402879, 'number': 144}
  • Comp: {'precision': 0.7708333333333334, 'recall': 0.7602739726027398, 'f1': 0.7655172413793104, 'number': 146}
  • Comp:sp: {'precision': 0.7931034482758621, 'recall': 0.5897435897435898, 'f1': 0.676470588235294, 'number': 39}
  • Dvcl: {'precision': 0.8210526315789474, 'recall': 0.7027027027027027, 'f1': 0.7572815533980582, 'number': 111}
  • Dvcl:sp: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 3}
  • Dvcl:svc: {'precision': 1.0, 'recall': 0.2, 'f1': 0.33333333333333337, 'number': 5}
  • Dvmod: {'precision': 0.8085585585585585, 'recall': 0.7638297872340426, 'f1': 0.7855579868708972, 'number': 470}
  • Dvmod:det: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 2}
  • Et: {'precision': 0.8657407407407407, 'recall': 0.7824267782426778, 'f1': 0.8219780219780219, 'number': 239}
  • Et:numgov: {'precision': 0.75, 'recall': 0.75, 'f1': 0.75, 'number': 12}
  • Et:nummod: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 3}
  • Iscourse: {'precision': 0.753731343283582, 'recall': 0.6352201257861635, 'f1': 0.6894197952218429, 'number': 159}
  • Islocated: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 5}
  • Ixed: {'precision': 0.75, 'recall': 0.2608695652173913, 'f1': 0.3870967741935483, 'number': 23}
  • Lat:abs: {'precision': 1.0, 'recall': 0.5, 'f1': 0.6666666666666666, 'number': 2}
  • Lat:foreign: {'precision': 0.625, 'recall': 0.25, 'f1': 0.35714285714285715, 'number': 20}
  • Lat:name: {'precision': 0.631578947368421, 'recall': 0.43636363636363634, 'f1': 0.5161290322580645, 'number': 55}
  • Lat:range: {'precision': 0.75, 'recall': 0.5, 'f1': 0.6, 'number': 12}
  • Lat:repeat: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 3}
  • Lat:title: {'precision': 0.616, 'recall': 0.47530864197530864, 'f1': 0.5365853658536586, 'number': 162}
  • Mod: {'precision': 0.7972646822204345, 'recall': 0.7155234657039711, 'f1': 0.7541856925418569, 'number': 1385}
  • Obj: {'precision': 0.4090909090909091, 'recall': 0.6, 'f1': 0.4864864864864865, 'number': 15}
  • Ocative: {'precision': 0.25, 'recall': 1.0, 'f1': 0.4, 'number': 1}
  • Oeswith: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 1}
  • Ompound: {'precision': 0.6764705882352942, 'recall': 0.3898305084745763, 'f1': 0.49462365591397844, 'number': 59}
  • Onj: {'precision': 0.7439024390243902, 'recall': 0.5831739961759083, 'f1': 0.6538049303322616, 'number': 523}
  • Oot: {'precision': 0.9379310344827586, 'recall': 0.9066666666666666, 'f1': 0.9220338983050848, 'number': 600}
  • Op: {'precision': 0.7592592592592593, 'recall': 0.7454545454545455, 'f1': 0.7522935779816514, 'number': 55}
  • Ppos: {'precision': 0.4262295081967213, 'recall': 0.30952380952380953, 'f1': 0.3586206896551724, 'number': 84}
  • Rphan: {'precision': 0.6, 'recall': 0.23076923076923078, 'f1': 0.33333333333333337, 'number': 13}
  • Subj: {'precision': 0.8660084626234132, 'recall': 0.8143236074270557, 'f1': 0.8393711551606288, 'number': 754}
  • Ummod: {'precision': 0.6153846153846154, 'recall': 0.6, 'f1': 0.6075949367088608, 'number': 40}
  • Ummod:gov: {'precision': 0.7352941176470589, 'recall': 0.625, 'f1': 0.6756756756756757, 'number': 40}
  • Unct: {'precision': 0.8604790419161676, 'recall': 0.7418688693856479, 'f1': 0.7967840310507347, 'number': 1937}
  • Ux: {'precision': 0.6875, 'recall': 0.6111111111111112, 'f1': 0.6470588235294118, 'number': 18}
  • Xpl: {'precision': 0.8333333333333334, 'recall': 0.7142857142857143, 'f1': 0.7692307692307692, 'number': 7}
  • Overall Precision: 0.8253
  • Overall Recall: 0.7232
  • Overall F1: 0.7709
  • Overall Accuracy: 0.8090

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Framework versions

  • Transformers 4.39.3
  • Pytorch 1.11.0a0+17540c5
  • Datasets 2.21.0
  • Tokenizers 0.15.2
Downloads last month
32
Safetensors
Model size
336M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for izaitova/Goader_liberta-large-deprel

Finetuned
(3)
this model

Dataset used to train izaitova/Goader_liberta-large-deprel