|
--- |
|
license: mit |
|
base_model: DTAI-KULeuven/robbert-2023-dutch-large |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- universal_dependencies |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: robbert-2023-dutch-large-upos |
|
results: |
|
- task: |
|
name: Token Classification |
|
type: token-classification |
|
dataset: |
|
name: universal_dependencies |
|
type: universal_dependencies |
|
config: nl_alpino |
|
split: validation |
|
args: nl_alpino |
|
metrics: |
|
- name: Precision |
|
type: precision |
|
value: 0.8288342749653388 |
|
- name: Recall |
|
type: recall |
|
value: 0.7844121660589751 |
|
- name: F1 |
|
type: f1 |
|
value: 0.7968496038696615 |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.8897894458638006 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# robbert-2023-dutch-large-upos |
|
|
|
This model is a fine-tuned version of [DTAI-KULeuven/robbert-2023-dutch-large](https://huggingface.co/DTAI-KULeuven/robbert-2023-dutch-large) on the universal_dependencies dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.3606 |
|
- Precision: 0.8288 |
|
- Recall: 0.7844 |
|
- F1: 0.7968 |
|
- Accuracy: 0.8898 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| No log | 1.0 | 438 | 0.6318 | 0.7041 | 0.6544 | 0.6603 | 0.7663 | |
|
| No log | 2.0 | 876 | 0.5374 | 0.7741 | 0.6827 | 0.7090 | 0.8075 | |
|
| No log | 3.0 | 1314 | 0.4318 | 0.8544 | 0.7431 | 0.7527 | 0.8595 | |
|
| No log | 4.0 | 1752 | 0.4009 | 0.8254 | 0.7677 | 0.7796 | 0.8771 | |
|
| No log | 5.0 | 2190 | 0.3606 | 0.8288 | 0.7844 | 0.7968 | 0.8898 | |
|
| No log | 6.0 | 2628 | 0.3700 | 0.8318 | 0.8002 | 0.8108 | 0.9037 | |
|
| No log | 7.0 | 3066 | 0.3733 | 0.8522 | 0.8024 | 0.8163 | 0.9071 | |
|
| No log | 8.0 | 3504 | 0.3711 | 0.8659 | 0.8203 | 0.8333 | 0.9189 | |
|
| No log | 9.0 | 3942 | 0.3846 | 0.8599 | 0.8222 | 0.8343 | 0.9235 | |
|
| No log | 10.0 | 4380 | 0.3920 | 0.8657 | 0.8263 | 0.8397 | 0.9284 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.42.4 |
|
- Pytorch 2.3.1+cu121 |
|
- Datasets 2.21.0 |
|
- Tokenizers 0.19.1 |
|
|