Diffusion-KTO: Aligning Diffusion Models by Optimizing Human Utility


This model is fine-tuned from Stable Diffusion v1-5 on Pick-a-Pic v2 dataset using KTO.

Usage

import torch
from diffusers import AutoencoderKL, UNet2DConditionModel, DiffusionPipeline
vae_path = model_name = "runwayml/stable-diffusion-v1-5"
device = 'cuda'
weight_dtype = torch.float16
vae = AutoencoderKL.from_pretrained(
    vae_path,
    subfolder="vae",
)
unet = UNet2DConditionModel.from_pretrained(
    "jacklishufan/diffusion-kto", subfolder="unet",
)
pipeline = DiffusionPipeline.from_pretrained(
    model_name,
    vae=vae,
    unet=unet,
    device=device,
).to(device).to(weight_dtype)


result = pipeline(
    prompt="Self-portrait oil painting, a beautiful cyborg with golden hair, 8k",
    num_inference_steps=50,
    guidance_scale=7.0
)
img = result[0][0]

Code

The code is available here

Citation

@misc{li2024aligning,
      title={Aligning Diffusion Models by Optimizing Human Utility}, 
      author={Shufan Li and Konstantinos Kallidromitis and Akash Gokul and Yusuke Kato and Kazuki Kozuka},
      year={2024},
      eprint={2404.04465},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
Downloads last month
0
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Dataset used to train jacklishufan/diffusion-kto