custom_BERT_NER
This model is a fine-tuned version of bert-base-multilingual-cased on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.207071
- Perf P: 0.829268
- Perf R: 0.944444
- Inst P: 0.933333
- Inst R: 0.875000
- Comp P: 0.962617
- Comp R: 0.865546
- Precision: 0.862745
- Recall: 0.846154
- F1: 0.854369
- Accuracy: 0.952260
Model description
This model is for identifying performers, instrumentation, and composers of the music played in the concert from a brief introduction of a concert.
Tags:
PERF: Performer(s)
INST: Instrumentation
COMP: Composer(s)
MUSIC: Music title(s)
PER: Other name(s)
OTH: Other instrument(s)
OTHP: Other music title(s)
ORG: Companies, festivals, orchetras, ensembles, etc.
LOC: Country names, halls, etc.
MISC: Other miscellaneous nouns, including competitions.
Training and evaluation data
This model is trained ane evaluated on a custome dataset: jamie613/custom_NER
The set contains 150 samples of concert introductions in Mandarine.
The dataset is divide into training set (135 samples) and evaluation set (15 samples).
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
- metric_for_best_model = 'eval_f1'
- greater_is_better = True
- load_best_model_at_end = True
- early_stoping_patience = 3
Training results
Training Loss | Epoch | Step | Validation Loss | Perf P | Perf R | Inst P | Inst R | Comp P | Comp R | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.8629 | 1.0 | 135 | 0.3555 | 0.6951 | 0.7917 | 0.5176 | 0.6875 | 0.8455 | 0.7815 | 0.6913 | 0.6095 | 0.6478 | 0.8848 |
0.2867 | 2.0 | 270 | 0.2387 | 0.6275 | 0.8889 | 0.7719 | 0.6875 | 0.93 | 0.7815 | 0.7778 | 0.7663 | 0.7720 | 0.9265 |
0.1715 | 3.0 | 405 | 0.1832 | 0.8193 | 0.9444 | 0.875 | 0.7656 | 0.8636 | 0.7983 | 0.8186 | 0.8077 | 0.8131 | 0.9446 |
0.1027 | 4.0 | 540 | 0.2056 | 0.875 | 0.875 | 0.75 | 0.7969 | 0.9630 | 0.8739 | 0.8254 | 0.8180 | 0.8217 | 0.9441 |
0.0707 | 5.0 | 675 | 0.2007 | 0.825 | 0.9167 | 0.9245 | 0.7656 | 0.9423 | 0.8235 | 0.8378 | 0.8328 | 0.8353 | 0.9468 |
0.0517 | 6.0 | 810 | 0.2402 | 0.8415 | 0.9583 | 0.8889 | 0.75 | 0.93 | 0.7815 | 0.8311 | 0.8225 | 0.8268 | 0.9403 |
0.0359 | 7.0 | 945 | 0.2071 | 0.8293 | 0.9444 | 0.9333 | 0.875 | 0.9626 | 0.8655 | 0.8627 | 0.8462 | 0.8544 | 0.9523 |
0.0269 | 8.0 | 1080 | 0.2171 | 0.8415 | 0.9583 | 0.9608 | 0.7656 | 0.9604 | 0.8151 | 0.8411 | 0.8299 | 0.8354 | 0.9486 |
0.0196 | 9.0 | 1215 | 0.2317 | 0.8718 | 0.9444 | 0.8788 | 0.9062 | 0.9558 | 0.9076 | 0.8505 | 0.8417 | 0.8461 | 0.9510 |
0.0126 | 10.0 | 1350 | 0.2578 | 0.8161 | 0.9861 | 0.8923 | 0.9062 | 0.9537 | 0.8655 | 0.8495 | 0.8432 | 0.8463 | 0.9470 |
Framework versions
- Transformers 4.40.0
- Pytorch 2.2.1+cu121
- Datasets 2.19.0
- Tokenizers 0.19.1
- Downloads last month
- 5
Model tree for jamie613/custom_BERT_NER
Base model
google-bert/bert-base-multilingual-cased