|
--- |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- precision |
|
- recall |
|
- f1 |
|
base_model: distilbert-base-uncased-finetuned-sst-2-english |
|
model-index: |
|
- name: twitter-data-distilbert-base-uncased-sentiment-finetuned-memes |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# twitter-data-distilbert-base-uncased-sentiment-finetuned-memes |
|
|
|
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.2474 |
|
- Accuracy: 0.9282 |
|
- Precision: 0.9290 |
|
- Recall: 0.9282 |
|
- F1: 0.9282 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 64 |
|
- eval_batch_size: 64 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 6 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |
|
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:---------:|:------:|:------:| |
|
| 0.3623 | 1.0 | 1762 | 0.3171 | 0.8986 | 0.8995 | 0.8986 | 0.8981 | |
|
| 0.271 | 2.0 | 3524 | 0.2665 | 0.9176 | 0.9182 | 0.9176 | 0.9173 | |
|
| 0.2386 | 3.0 | 5286 | 0.2499 | 0.9237 | 0.9254 | 0.9237 | 0.9239 | |
|
| 0.2136 | 4.0 | 7048 | 0.2494 | 0.9259 | 0.9263 | 0.9259 | 0.9257 | |
|
| 0.1974 | 5.0 | 8810 | 0.2454 | 0.9278 | 0.9288 | 0.9278 | 0.9278 | |
|
| 0.182 | 6.0 | 10572 | 0.2474 | 0.9282 | 0.9290 | 0.9282 | 0.9282 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.24.0.dev0 |
|
- Pytorch 1.11.0+cu102 |
|
- Datasets 2.6.1 |
|
- Tokenizers 0.13.1 |
|
|