resnet-50

This model is a fine-tuned version of microsoft/resnet-50 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6922
  • Accuracy: 0.9310

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0.9655 7 0.6922 0.9310
0.6927 1.9310 14 0.6895 0.9310
0.6916 2.8966 21 0.6878 0.9310
0.6916 4.0 29 0.6853 0.9310
0.6899 4.9655 36 0.6839 0.9310
0.6878 5.9310 43 0.6811 0.9310
0.6868 6.8966 50 0.6826 0.9310
0.6868 8.0 58 0.6804 0.9310
0.6864 8.9655 65 0.6801 0.9310
0.686 9.6552 70 0.6800 0.9310

Framework versions

  • Transformers 4.42.3
  • Pytorch 2.3.1+cu118
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
3
Safetensors
Model size
23.6M params
Tensor type
F32
·
Inference API
Unable to determine this model's library. Check the docs .

Model tree for jayanthspratap/resnet-50

Finetuned
(146)
this model

Evaluation results