File size: 2,323 Bytes
b4f0906 ee25917 b4f0906 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 |
---
license: apache-2.0
base_model: microsoft/resnet-50
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: resnet-50
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.9310344827586207
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# resnet-50
This model is a fine-tuned version of [microsoft/resnet-50](https://huggingface.co/microsoft/resnet-50) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6922
- Accuracy: 0.9310
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:------:|:----:|:---------------:|:--------:|
| No log | 0.9655 | 7 | 0.6922 | 0.9310 |
| 0.6927 | 1.9310 | 14 | 0.6895 | 0.9310 |
| 0.6916 | 2.8966 | 21 | 0.6878 | 0.9310 |
| 0.6916 | 4.0 | 29 | 0.6853 | 0.9310 |
| 0.6899 | 4.9655 | 36 | 0.6839 | 0.9310 |
| 0.6878 | 5.9310 | 43 | 0.6811 | 0.9310 |
| 0.6868 | 6.8966 | 50 | 0.6826 | 0.9310 |
| 0.6868 | 8.0 | 58 | 0.6804 | 0.9310 |
| 0.6864 | 8.9655 | 65 | 0.6801 | 0.9310 |
| 0.686 | 9.6552 | 70 | 0.6800 | 0.9310 |
### Framework versions
- Transformers 4.42.3
- Pytorch 2.3.1+cu118
- Datasets 2.20.0
- Tokenizers 0.19.1
|