|
--- |
|
library_name: transformers |
|
license: llama3.1 |
|
base_model: meta-llama/Meta-Llama-3.1-8B-Instruct |
|
tags: |
|
- alignment-handbook |
|
- trl |
|
- cpo |
|
- generated_from_trainer |
|
- trl |
|
- cpo |
|
- generated_from_trainer |
|
datasets: |
|
- princeton-nlp/llama3-ultrafeedback |
|
model-index: |
|
- name: llama3.1-cpo_j-full-0911 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# llama3.1-cpo_j-full-0911 |
|
|
|
This model is a fine-tuned version of [meta-llama/Meta-Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct) on the princeton-nlp/llama3-ultrafeedback dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.4373 |
|
- Rewards/chosen: -14.1493 |
|
- Rewards/rejected: -15.5710 |
|
- Rewards/accuracies: 0.6543 |
|
- Rewards/margins: 1.4217 |
|
- Logps/rejected: -155.7095 |
|
- Logps/chosen: -141.4926 |
|
- Logits/rejected: -0.1136 |
|
- Logits/chosen: -0.1476 |
|
- Nll Loss: 0.1725 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-06 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 4 |
|
- seed: 42 |
|
- distributed_type: multi-GPU |
|
- num_devices: 4 |
|
- gradient_accumulation_steps: 8 |
|
- total_train_batch_size: 128 |
|
- total_eval_batch_size: 16 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 5 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | Nll Loss | |
|
|:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|:--------:| |
|
| 1.4367 | 0.9986 | 432 | 1.3926 | -17.0679 | -18.0962 | 0.6565 | 1.0283 | -180.9624 | -170.6792 | -0.4080 | -0.4373 | 0.3200 | |
|
| 0.5472 | 1.9994 | 865 | 1.2973 | -16.2909 | -17.5852 | 0.6587 | 1.2944 | -175.8523 | -162.9086 | -0.5434 | -0.5688 | 0.2148 | |
|
| 0.2244 | 2.9980 | 1297 | 1.3861 | -15.7105 | -17.2195 | 0.6565 | 1.5089 | -172.1945 | -157.1052 | -0.3428 | -0.3715 | 0.2034 | |
|
| 0.1472 | 3.9988 | 1730 | 1.4029 | -14.6462 | -16.1385 | 0.6522 | 1.4923 | -161.3849 | -146.4623 | -0.2701 | -0.3029 | 0.1876 | |
|
| 0.1143 | 4.9928 | 2160 | 1.4373 | -14.1493 | -15.5710 | 0.6543 | 1.4217 | -155.7095 | -141.4926 | -0.1136 | -0.1476 | 0.1725 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.44.2 |
|
- Pytorch 2.3.1 |
|
- Datasets 2.21.0 |
|
- Tokenizers 0.19.1 |
|
|