SentenceTransformer based on Snowflake/snowflake-arctic-embed-l
This is a sentence-transformers model finetuned from Snowflake/snowflake-arctic-embed-l. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: Snowflake/snowflake-arctic-embed-l
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 1024 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("jeevanions/finetuned_arctic-embedd-l")
# Run inference
sentences = [
'How should risks or trustworthiness characteristics that cannot be measured be documented?',
'MEASURE 1.1: Approaches and metrics for measurement of AI risks enumerated during the MAP function are selected for \nimplementation starting with the most significant AI risks. The risks or trustworthiness characteristics that will not – or cannot – be \nmeasured are properly documented. \nAction ID \nSuggested Action \nGAI Risks \nMS-1.1-001 Employ methods to trace the origin and modifications of digital content. \nInformation Integrity \nMS-1.1-002 \nIntegrate tools designed to analyze content provenance and detect data \nanomalies, verify the authenticity of digital signatures, and identify patterns \nassociated with misinformation or manipulation. \nInformation Integrity \nMS-1.1-003 \nDisaggregate evaluation metrics by demographic factors to identify any \ndiscrepancies in how content provenance mechanisms work across diverse \npopulations. \nInformation Integrity; Harmful \nBias and Homogenization \nMS-1.1-004 Develop a suite of metrics to evaluate structured public feedback exercises',
'existing human performance considered as a performance baseline for the algorithm to meet pre-deployment, \nand as a lifecycle minimum performance standard. Decision possibilities resulting from performance testing \nshould include the possibility of not deploying the system. \nRisk identification and mitigation. Before deployment, and in a proactive and ongoing manner, poten\xad\ntial risks of the automated system should be identified and mitigated. Identified risks should focus on the \npotential for meaningful impact on people’s rights, opportunities, or access and include those to impacted \ncommunities that may not be direct users of the automated system, risks resulting from purposeful misuse of \nthe system, and other concerns identified via the consultation process. Assessment and, where possible, mea\xad\nsurement of the impact of risks should be included and balanced such that high impact risks receive attention',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.2807 |
cosine_accuracy@3 | 0.4649 |
cosine_accuracy@5 | 0.5351 |
cosine_accuracy@10 | 0.7193 |
cosine_precision@1 | 0.2807 |
cosine_precision@3 | 0.155 |
cosine_precision@5 | 0.107 |
cosine_precision@10 | 0.0719 |
cosine_recall@1 | 0.2807 |
cosine_recall@3 | 0.4649 |
cosine_recall@5 | 0.5351 |
cosine_recall@10 | 0.7193 |
cosine_ndcg@10 | 0.4797 |
cosine_mrr@10 | 0.4064 |
cosine_map@100 | 0.4236 |
dot_accuracy@1 | 0.2807 |
dot_accuracy@3 | 0.4649 |
dot_accuracy@5 | 0.5351 |
dot_accuracy@10 | 0.7193 |
dot_precision@1 | 0.2807 |
dot_precision@3 | 0.155 |
dot_precision@5 | 0.107 |
dot_precision@10 | 0.0719 |
dot_recall@1 | 0.2807 |
dot_recall@3 | 0.4649 |
dot_recall@5 | 0.5351 |
dot_recall@10 | 0.7193 |
dot_ndcg@10 | 0.4797 |
dot_mrr@10 | 0.4064 |
dot_map@100 | 0.4236 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 3,430 training samples
- Columns:
sentence_0
andsentence_1
- Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 type string string details - min: 8 tokens
- mean: 17.71 tokens
- max: 36 tokens
- min: 7 tokens
- mean: 172.72 tokens
- max: 356 tokens
- Samples:
sentence_0 sentence_1 What are the key steps to obtain input from stakeholder communities to identify unacceptable use in AI systems?
15
GV-1.3-004 Obtain input from stakeholder communities to identify unacceptable use, in
accordance with activities in the AI RMF Map function.
CBRN Information or Capabilities;
Obscene, Degrading, and/or
Abusive Content; Harmful Bias
and Homogenization; Dangerous,
Violent, or Hateful Content
GV-1.3-005
Maintain an updated hierarchy of identified and expected GAI risks connected to
contexts of GAI model advancement and use, potentially including specialized risk
levels for GAI systems that address issues such as model collapse and algorithmic
monoculture.
Harmful Bias and Homogenization
GV-1.3-006
Reevaluate organizational risk tolerances to account for unacceptable negative risk
(such as where significant negative impacts are imminent, severe harms are
actually occurring, or large-scale risks could occur); and broad GAI negative risks,
including: Immature safety or risk cultures related to AI and GAI design,
development and deployment, public information integrity risks, including impactsHow can organizations maintain an updated hierarchy of identified and expected GAI risks?
15
GV-1.3-004 Obtain input from stakeholder communities to identify unacceptable use, in
accordance with activities in the AI RMF Map function.
CBRN Information or Capabilities;
Obscene, Degrading, and/or
Abusive Content; Harmful Bias
and Homogenization; Dangerous,
Violent, or Hateful Content
GV-1.3-005
Maintain an updated hierarchy of identified and expected GAI risks connected to
contexts of GAI model advancement and use, potentially including specialized risk
levels for GAI systems that address issues such as model collapse and algorithmic
monoculture.
Harmful Bias and Homogenization
GV-1.3-006
Reevaluate organizational risk tolerances to account for unacceptable negative risk
(such as where significant negative impacts are imminent, severe harms are
actually occurring, or large-scale risks could occur); and broad GAI negative risks,
including: Immature safety or risk cultures related to AI and GAI design,
development and deployment, public information integrity risks, including impactsWhat are some examples of unacceptable uses of AI as identified by stakeholder communities?
15
GV-1.3-004 Obtain input from stakeholder communities to identify unacceptable use, in
accordance with activities in the AI RMF Map function.
CBRN Information or Capabilities;
Obscene, Degrading, and/or
Abusive Content; Harmful Bias
and Homogenization; Dangerous,
Violent, or Hateful Content
GV-1.3-005
Maintain an updated hierarchy of identified and expected GAI risks connected to
contexts of GAI model advancement and use, potentially including specialized risk
levels for GAI systems that address issues such as model collapse and algorithmic
monoculture.
Harmful Bias and Homogenization
GV-1.3-006
Reevaluate organizational risk tolerances to account for unacceptable negative risk
(such as where significant negative impacts are imminent, severe harms are
actually occurring, or large-scale risks could occur); and broad GAI negative risks,
including: Immature safety or risk cultures related to AI and GAI design,
development and deployment, public information integrity risks, including impacts - Loss:
MatryoshkaLoss
with these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 1per_device_eval_batch_size
: 1num_train_epochs
: 5multi_dataset_batch_sampler
: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 1per_device_eval_batch_size
: 1per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1num_train_epochs
: 5max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseeval_use_gather_object
: Falsebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: round_robin
Training Logs
Click to expand
Epoch | Step | Training Loss | cosine_map@100 |
---|---|---|---|
0.0146 | 50 | - | 0.4134 |
0.0292 | 100 | - | 0.4134 |
0.0437 | 150 | - | 0.4134 |
0.0583 | 200 | - | 0.4134 |
0.0729 | 250 | - | 0.4134 |
0.0875 | 300 | - | 0.4134 |
0.1020 | 350 | - | 0.4134 |
0.1166 | 400 | - | 0.4134 |
0.1312 | 450 | - | 0.4134 |
0.1458 | 500 | 0.0 | 0.4134 |
0.1603 | 550 | - | 0.4134 |
0.1749 | 600 | - | 0.4134 |
0.1895 | 650 | - | 0.4134 |
0.2041 | 700 | - | 0.4134 |
0.2187 | 750 | - | 0.4134 |
0.2332 | 800 | - | 0.4134 |
0.2478 | 850 | - | 0.4134 |
0.2624 | 900 | - | 0.4134 |
0.2770 | 950 | - | 0.4134 |
0.2915 | 1000 | 0.0 | 0.4134 |
0.3061 | 1050 | - | 0.4134 |
0.3207 | 1100 | - | 0.4134 |
0.3353 | 1150 | - | 0.4134 |
0.3499 | 1200 | - | 0.4134 |
0.3644 | 1250 | - | 0.4134 |
0.3790 | 1300 | - | 0.4134 |
0.3936 | 1350 | - | 0.4134 |
0.4082 | 1400 | - | 0.4134 |
0.4227 | 1450 | - | 0.4134 |
0.4373 | 1500 | 0.0 | 0.4134 |
0.4519 | 1550 | - | 0.4134 |
0.4665 | 1600 | - | 0.4134 |
0.4810 | 1650 | - | 0.4134 |
0.4956 | 1700 | - | 0.4134 |
0.5102 | 1750 | - | 0.4134 |
0.5248 | 1800 | - | 0.4134 |
0.5394 | 1850 | - | 0.4134 |
0.5539 | 1900 | - | 0.4134 |
0.5685 | 1950 | - | 0.4134 |
0.5831 | 2000 | 0.0 | 0.4135 |
0.5977 | 2050 | - | 0.4135 |
0.6122 | 2100 | - | 0.4135 |
0.6268 | 2150 | - | 0.4135 |
0.6414 | 2200 | - | 0.4135 |
0.6560 | 2250 | - | 0.4135 |
0.6706 | 2300 | - | 0.4135 |
0.6851 | 2350 | - | 0.4135 |
0.6997 | 2400 | - | 0.4135 |
0.7143 | 2450 | - | 0.4134 |
0.7289 | 2500 | 0.0 | 0.4134 |
0.7434 | 2550 | - | 0.4134 |
0.7580 | 2600 | - | 0.4134 |
0.7726 | 2650 | - | 0.4134 |
0.7872 | 2700 | - | 0.4134 |
0.8017 | 2750 | - | 0.4134 |
0.8163 | 2800 | - | 0.4134 |
0.8309 | 2850 | - | 0.4135 |
0.8455 | 2900 | - | 0.4135 |
0.8601 | 2950 | - | 0.4135 |
0.8746 | 3000 | 0.0 | 0.4135 |
0.8892 | 3050 | - | 0.4135 |
0.9038 | 3100 | - | 0.4135 |
0.9184 | 3150 | - | 0.4135 |
0.9329 | 3200 | - | 0.4135 |
0.9475 | 3250 | - | 0.4135 |
0.9621 | 3300 | - | 0.4135 |
0.9767 | 3350 | - | 0.4135 |
0.9913 | 3400 | - | 0.4135 |
1.0 | 3430 | - | 0.4135 |
1.0058 | 3450 | - | 0.4135 |
1.0204 | 3500 | 0.0 | 0.4135 |
1.0350 | 3550 | - | 0.4135 |
1.0496 | 3600 | - | 0.4135 |
1.0641 | 3650 | - | 0.4135 |
1.0787 | 3700 | - | 0.4135 |
1.0933 | 3750 | - | 0.4135 |
1.1079 | 3800 | - | 0.4135 |
1.1224 | 3850 | - | 0.4135 |
1.1370 | 3900 | - | 0.4179 |
1.1516 | 3950 | - | 0.4179 |
1.1662 | 4000 | 0.0 | 0.4179 |
1.1808 | 4050 | - | 0.4179 |
1.1953 | 4100 | - | 0.4179 |
1.2099 | 4150 | - | 0.4179 |
1.2245 | 4200 | - | 0.4179 |
1.2391 | 4250 | - | 0.4179 |
1.2536 | 4300 | - | 0.4179 |
1.2682 | 4350 | - | 0.4179 |
1.2828 | 4400 | - | 0.4179 |
1.2974 | 4450 | - | 0.4179 |
1.3120 | 4500 | 0.0 | 0.4179 |
1.3265 | 4550 | - | 0.4179 |
1.3411 | 4600 | - | 0.4179 |
1.3557 | 4650 | - | 0.4179 |
1.3703 | 4700 | - | 0.4179 |
1.3848 | 4750 | - | 0.4179 |
1.3994 | 4800 | - | 0.4179 |
1.4140 | 4850 | - | 0.4179 |
1.4286 | 4900 | - | 0.4179 |
1.4431 | 4950 | - | 0.4179 |
1.4577 | 5000 | 0.0 | 0.4179 |
1.4723 | 5050 | - | 0.4179 |
1.4869 | 5100 | - | 0.4179 |
1.5015 | 5150 | - | 0.4179 |
1.5160 | 5200 | - | 0.4179 |
1.5306 | 5250 | - | 0.4179 |
1.5452 | 5300 | - | 0.4179 |
1.5598 | 5350 | - | 0.4179 |
1.5743 | 5400 | - | 0.4179 |
1.5889 | 5450 | - | 0.4179 |
1.6035 | 5500 | 0.0 | 0.4179 |
1.6181 | 5550 | - | 0.4179 |
1.6327 | 5600 | - | 0.4179 |
1.6472 | 5650 | - | 0.4179 |
1.6618 | 5700 | - | 0.4179 |
1.6764 | 5750 | - | 0.4179 |
1.6910 | 5800 | - | 0.4179 |
1.7055 | 5850 | - | 0.4179 |
1.7201 | 5900 | - | 0.4179 |
1.7347 | 5950 | - | 0.4179 |
1.7493 | 6000 | 0.0 | 0.4179 |
1.7638 | 6050 | - | 0.4179 |
1.7784 | 6100 | - | 0.4179 |
1.7930 | 6150 | - | 0.4179 |
1.8076 | 6200 | - | 0.4179 |
1.8222 | 6250 | - | 0.4179 |
1.8367 | 6300 | - | 0.4179 |
1.8513 | 6350 | - | 0.4179 |
1.8659 | 6400 | - | 0.4179 |
1.8805 | 6450 | - | 0.4179 |
1.8950 | 6500 | 0.0 | 0.4179 |
1.9096 | 6550 | - | 0.4179 |
1.9242 | 6600 | - | 0.4179 |
1.9388 | 6650 | - | 0.4179 |
1.9534 | 6700 | - | 0.4179 |
1.9679 | 6750 | - | 0.4179 |
1.9825 | 6800 | - | 0.4179 |
1.9971 | 6850 | - | 0.4179 |
2.0 | 6860 | - | 0.4179 |
2.0117 | 6900 | - | 0.4179 |
2.0262 | 6950 | - | 0.4179 |
2.0408 | 7000 | 0.0 | 0.4179 |
2.0554 | 7050 | - | 0.4179 |
2.0700 | 7100 | - | 0.4179 |
2.0845 | 7150 | - | 0.4179 |
2.0991 | 7200 | - | 0.4179 |
2.1137 | 7250 | - | 0.4179 |
2.1283 | 7300 | - | 0.4179 |
2.1429 | 7350 | - | 0.4179 |
2.1574 | 7400 | - | 0.4179 |
2.1720 | 7450 | - | 0.4179 |
2.1866 | 7500 | 0.0 | 0.4179 |
2.2012 | 7550 | - | 0.4179 |
2.2157 | 7600 | - | 0.4179 |
2.2303 | 7650 | - | 0.4179 |
2.2449 | 7700 | - | 0.4179 |
2.2595 | 7750 | - | 0.4179 |
2.2741 | 7800 | - | 0.4179 |
2.2886 | 7850 | - | 0.4179 |
2.3032 | 7900 | - | 0.4179 |
2.3178 | 7950 | - | 0.4179 |
2.3324 | 8000 | 0.0 | 0.4179 |
2.3469 | 8050 | - | 0.4179 |
2.3615 | 8100 | - | 0.4179 |
2.3761 | 8150 | - | 0.4179 |
2.3907 | 8200 | - | 0.4179 |
2.4052 | 8250 | - | 0.4179 |
2.4198 | 8300 | - | 0.4179 |
2.4344 | 8350 | - | 0.4179 |
2.4490 | 8400 | - | 0.4179 |
2.4636 | 8450 | - | 0.4179 |
2.4781 | 8500 | 0.0 | 0.4179 |
2.4927 | 8550 | - | 0.4179 |
2.5073 | 8600 | - | 0.4179 |
2.5219 | 8650 | - | 0.4179 |
2.5364 | 8700 | - | 0.4179 |
2.5510 | 8750 | - | 0.4179 |
2.5656 | 8800 | - | 0.4179 |
2.5802 | 8850 | - | 0.4179 |
2.5948 | 8900 | - | 0.4179 |
2.6093 | 8950 | - | 0.4179 |
2.6239 | 9000 | 0.0 | 0.4179 |
2.6385 | 9050 | - | 0.4179 |
2.6531 | 9100 | - | 0.4179 |
2.6676 | 9150 | - | 0.4179 |
2.6822 | 9200 | - | 0.4179 |
2.6968 | 9250 | - | 0.4223 |
2.7114 | 9300 | - | 0.4223 |
2.7259 | 9350 | - | 0.4223 |
2.7405 | 9400 | - | 0.4223 |
2.7551 | 9450 | - | 0.4223 |
2.7697 | 9500 | 0.0 | 0.4223 |
2.7843 | 9550 | - | 0.4223 |
2.7988 | 9600 | - | 0.4223 |
2.8134 | 9650 | - | 0.4223 |
2.8280 | 9700 | - | 0.4223 |
2.8426 | 9750 | - | 0.4223 |
2.8571 | 9800 | - | 0.4223 |
2.8717 | 9850 | - | 0.4223 |
2.8863 | 9900 | - | 0.4223 |
2.9009 | 9950 | - | 0.4223 |
2.9155 | 10000 | 0.0 | 0.4223 |
2.9300 | 10050 | - | 0.4223 |
2.9446 | 10100 | - | 0.4223 |
2.9592 | 10150 | - | 0.4223 |
2.9738 | 10200 | - | 0.4223 |
2.9883 | 10250 | - | 0.4223 |
3.0 | 10290 | - | 0.4223 |
3.0029 | 10300 | - | 0.4223 |
3.0175 | 10350 | - | 0.4223 |
3.0321 | 10400 | - | 0.4223 |
3.0466 | 10450 | - | 0.4223 |
3.0612 | 10500 | 0.0 | 0.4223 |
3.0758 | 10550 | - | 0.4223 |
3.0904 | 10600 | - | 0.4223 |
3.1050 | 10650 | - | 0.4223 |
3.1195 | 10700 | - | 0.4223 |
3.1341 | 10750 | - | 0.4223 |
3.1487 | 10800 | - | 0.4223 |
3.1633 | 10850 | - | 0.4223 |
3.1778 | 10900 | - | 0.4223 |
3.1924 | 10950 | - | 0.4223 |
3.2070 | 11000 | 0.0 | 0.4223 |
3.2216 | 11050 | - | 0.4223 |
3.2362 | 11100 | - | 0.4223 |
3.2507 | 11150 | - | 0.4223 |
3.2653 | 11200 | - | 0.4223 |
3.2799 | 11250 | - | 0.4223 |
3.2945 | 11300 | - | 0.4223 |
3.3090 | 11350 | - | 0.4223 |
3.3236 | 11400 | - | 0.4223 |
3.3382 | 11450 | - | 0.4223 |
3.3528 | 11500 | 0.0 | 0.4223 |
3.3673 | 11550 | - | 0.4223 |
3.3819 | 11600 | - | 0.4223 |
3.3965 | 11650 | - | 0.4223 |
3.4111 | 11700 | - | 0.4223 |
3.4257 | 11750 | - | 0.4223 |
3.4402 | 11800 | - | 0.4223 |
3.4548 | 11850 | - | 0.4223 |
3.4694 | 11900 | - | 0.4223 |
3.4840 | 11950 | - | 0.4223 |
3.4985 | 12000 | 0.0 | 0.4223 |
3.5131 | 12050 | - | 0.4223 |
3.5277 | 12100 | - | 0.4223 |
3.5423 | 12150 | - | 0.4223 |
3.5569 | 12200 | - | 0.4223 |
3.5714 | 12250 | - | 0.4223 |
3.5860 | 12300 | - | 0.4223 |
3.6006 | 12350 | - | 0.4223 |
3.6152 | 12400 | - | 0.4223 |
3.6297 | 12450 | - | 0.4223 |
3.6443 | 12500 | 0.0 | 0.4223 |
3.6589 | 12550 | - | 0.4223 |
3.6735 | 12600 | - | 0.4223 |
3.6880 | 12650 | - | 0.4223 |
3.7026 | 12700 | - | 0.4223 |
3.7172 | 12750 | - | 0.4223 |
3.7318 | 12800 | - | 0.4223 |
3.7464 | 12850 | - | 0.4223 |
3.7609 | 12900 | - | 0.4223 |
3.7755 | 12950 | - | 0.4223 |
3.7901 | 13000 | 0.0 | 0.4223 |
3.8047 | 13050 | - | 0.4223 |
3.8192 | 13100 | - | 0.4226 |
3.8338 | 13150 | - | 0.4226 |
3.8484 | 13200 | - | 0.4226 |
3.8630 | 13250 | - | 0.4226 |
3.8776 | 13300 | - | 0.4226 |
3.8921 | 13350 | - | 0.4226 |
3.9067 | 13400 | - | 0.4226 |
3.9213 | 13450 | - | 0.4226 |
3.9359 | 13500 | 0.0 | 0.4226 |
3.9504 | 13550 | - | 0.4226 |
3.9650 | 13600 | - | 0.4226 |
3.9796 | 13650 | - | 0.4226 |
3.9942 | 13700 | - | 0.4226 |
4.0 | 13720 | - | 0.4226 |
4.0087 | 13750 | - | 0.4226 |
4.0233 | 13800 | - | 0.4226 |
4.0379 | 13850 | - | 0.4226 |
4.0525 | 13900 | - | 0.4226 |
4.0671 | 13950 | - | 0.4226 |
4.0816 | 14000 | 0.0 | 0.4226 |
4.0962 | 14050 | - | 0.4226 |
4.1108 | 14100 | - | 0.4226 |
4.1254 | 14150 | - | 0.4226 |
4.1399 | 14200 | - | 0.4226 |
4.1545 | 14250 | - | 0.4226 |
4.1691 | 14300 | - | 0.4226 |
4.1837 | 14350 | - | 0.4226 |
4.1983 | 14400 | - | 0.4226 |
4.2128 | 14450 | - | 0.4226 |
4.2274 | 14500 | 0.0 | 0.4226 |
4.2420 | 14550 | - | 0.4226 |
4.2566 | 14600 | - | 0.4226 |
4.2711 | 14650 | - | 0.4226 |
4.2857 | 14700 | - | 0.4226 |
4.3003 | 14750 | - | 0.4226 |
4.3149 | 14800 | - | 0.4226 |
4.3294 | 14850 | - | 0.4226 |
4.3440 | 14900 | - | 0.4226 |
4.3586 | 14950 | - | 0.4226 |
4.3732 | 15000 | 0.0 | 0.4226 |
4.3878 | 15050 | - | 0.4226 |
4.4023 | 15100 | - | 0.4226 |
4.4169 | 15150 | - | 0.4226 |
4.4315 | 15200 | - | 0.4226 |
4.4461 | 15250 | - | 0.4226 |
4.4606 | 15300 | - | 0.4226 |
4.4752 | 15350 | - | 0.4226 |
4.4898 | 15400 | - | 0.4226 |
4.5044 | 15450 | - | 0.4226 |
4.5190 | 15500 | 0.0 | 0.4226 |
4.5335 | 15550 | - | 0.4226 |
4.5481 | 15600 | - | 0.4226 |
4.5627 | 15650 | - | 0.4226 |
4.5773 | 15700 | - | 0.4226 |
4.5918 | 15750 | - | 0.4226 |
4.6064 | 15800 | - | 0.4226 |
4.6210 | 15850 | - | 0.4226 |
4.6356 | 15900 | - | 0.4226 |
4.6501 | 15950 | - | 0.4226 |
4.6647 | 16000 | 0.0 | 0.4226 |
4.6793 | 16050 | - | 0.4226 |
4.6939 | 16100 | - | 0.4226 |
4.7085 | 16150 | - | 0.4226 |
4.7230 | 16200 | - | 0.4226 |
4.7376 | 16250 | - | 0.4226 |
4.7522 | 16300 | - | 0.4226 |
4.7668 | 16350 | - | 0.4226 |
4.7813 | 16400 | - | 0.4226 |
4.7959 | 16450 | - | 0.4226 |
4.8105 | 16500 | 0.0 | 0.4226 |
4.8251 | 16550 | - | 0.4226 |
4.8397 | 16600 | - | 0.4226 |
4.8542 | 16650 | - | 0.4226 |
4.8688 | 16700 | - | 0.4226 |
4.8834 | 16750 | - | 0.4226 |
4.8980 | 16800 | - | 0.4226 |
4.9125 | 16850 | - | 0.4226 |
4.9271 | 16900 | - | 0.4226 |
4.9417 | 16950 | - | 0.4226 |
4.9563 | 17000 | 0.0 | 0.4226 |
4.9708 | 17050 | - | 0.4226 |
4.9854 | 17100 | - | 0.4226 |
5.0 | 17150 | - | 0.4226 |
0.0146 | 50 | - | 0.4226 |
0.0292 | 100 | - | 0.4226 |
0.0437 | 150 | - | 0.4226 |
0.0583 | 200 | - | 0.4226 |
0.0729 | 250 | - | 0.4226 |
0.0875 | 300 | - | 0.4226 |
0.1020 | 350 | - | 0.4226 |
0.1166 | 400 | - | 0.4226 |
0.1312 | 450 | - | 0.4226 |
0.1458 | 500 | 0.0 | 0.4226 |
0.1603 | 550 | - | 0.4226 |
0.1749 | 600 | - | 0.4226 |
0.1895 | 650 | - | 0.4226 |
0.2041 | 700 | - | 0.4226 |
0.2187 | 750 | - | 0.4226 |
0.2332 | 800 | - | 0.4226 |
0.2478 | 850 | - | 0.4226 |
0.2624 | 900 | - | 0.4226 |
0.2770 | 950 | - | 0.4226 |
0.2915 | 1000 | 0.0 | 0.4227 |
0.3061 | 1050 | - | 0.4227 |
0.3207 | 1100 | - | 0.4227 |
0.3353 | 1150 | - | 0.4227 |
0.3499 | 1200 | - | 0.4227 |
0.3644 | 1250 | - | 0.4227 |
0.3790 | 1300 | - | 0.4227 |
0.3936 | 1350 | - | 0.4227 |
0.4082 | 1400 | - | 0.4227 |
0.4227 | 1450 | - | 0.4227 |
0.4373 | 1500 | 0.0 | 0.4227 |
0.4519 | 1550 | - | 0.4227 |
0.4665 | 1600 | - | 0.4227 |
0.4810 | 1650 | - | 0.4227 |
0.4956 | 1700 | - | 0.4227 |
0.5102 | 1750 | - | 0.4227 |
0.5248 | 1800 | - | 0.4227 |
0.5394 | 1850 | - | 0.4227 |
0.5539 | 1900 | - | 0.4227 |
0.5685 | 1950 | - | 0.4227 |
0.5831 | 2000 | 0.0 | 0.4227 |
0.5977 | 2050 | - | 0.4227 |
0.6122 | 2100 | - | 0.4227 |
0.6268 | 2150 | - | 0.4227 |
0.6414 | 2200 | - | 0.4227 |
0.6560 | 2250 | - | 0.4227 |
0.6706 | 2300 | - | 0.4227 |
0.6851 | 2350 | - | 0.4227 |
0.6997 | 2400 | - | 0.4227 |
0.7143 | 2450 | - | 0.4227 |
0.7289 | 2500 | 0.0 | 0.4227 |
0.7434 | 2550 | - | 0.4227 |
0.7580 | 2600 | - | 0.4227 |
0.7726 | 2650 | - | 0.4227 |
0.7872 | 2700 | - | 0.4227 |
0.8017 | 2750 | - | 0.4227 |
0.8163 | 2800 | - | 0.4227 |
0.8309 | 2850 | - | 0.4227 |
0.8455 | 2900 | - | 0.4227 |
0.8601 | 2950 | - | 0.4227 |
0.8746 | 3000 | 0.0 | 0.4227 |
0.8892 | 3050 | - | 0.4227 |
0.9038 | 3100 | - | 0.4227 |
0.9184 | 3150 | - | 0.4227 |
0.9329 | 3200 | - | 0.4227 |
0.9475 | 3250 | - | 0.4227 |
0.9621 | 3300 | - | 0.4227 |
0.9767 | 3350 | - | 0.4227 |
0.9913 | 3400 | - | 0.4227 |
1.0 | 3430 | - | 0.4227 |
1.0058 | 3450 | - | 0.4227 |
1.0204 | 3500 | 0.0 | 0.4227 |
1.0350 | 3550 | - | 0.4227 |
1.0496 | 3600 | - | 0.4227 |
1.0641 | 3650 | - | 0.4227 |
1.0787 | 3700 | - | 0.4227 |
1.0933 | 3750 | - | 0.4227 |
1.1079 | 3800 | - | 0.4227 |
1.1224 | 3850 | - | 0.4227 |
1.1370 | 3900 | - | 0.4227 |
1.1516 | 3950 | - | 0.4227 |
1.1662 | 4000 | 0.0 | 0.4227 |
1.1808 | 4050 | - | 0.4227 |
1.1953 | 4100 | - | 0.4227 |
1.2099 | 4150 | - | 0.4231 |
1.2245 | 4200 | - | 0.4231 |
1.2391 | 4250 | - | 0.4231 |
1.2536 | 4300 | - | 0.4231 |
1.2682 | 4350 | - | 0.4231 |
1.2828 | 4400 | - | 0.4231 |
1.2974 | 4450 | - | 0.4231 |
1.3120 | 4500 | 0.0 | 0.4231 |
1.3265 | 4550 | - | 0.4231 |
1.3411 | 4600 | - | 0.4231 |
1.3557 | 4650 | - | 0.4232 |
1.3703 | 4700 | - | 0.4232 |
1.3848 | 4750 | - | 0.4232 |
1.3994 | 4800 | - | 0.4232 |
1.4140 | 4850 | - | 0.4232 |
1.4286 | 4900 | - | 0.4232 |
1.4431 | 4950 | - | 0.4232 |
1.4577 | 5000 | 0.0 | 0.4232 |
1.4723 | 5050 | - | 0.4232 |
1.4869 | 5100 | - | 0.4232 |
1.5015 | 5150 | - | 0.4232 |
1.5160 | 5200 | - | 0.4232 |
1.5306 | 5250 | - | 0.4232 |
1.5452 | 5300 | - | 0.4233 |
1.5598 | 5350 | - | 0.4233 |
1.5743 | 5400 | - | 0.4233 |
1.5889 | 5450 | - | 0.4233 |
1.6035 | 5500 | 0.0 | 0.4233 |
1.6181 | 5550 | - | 0.4233 |
1.6327 | 5600 | - | 0.4233 |
1.6472 | 5650 | - | 0.4233 |
1.6618 | 5700 | - | 0.4233 |
1.6764 | 5750 | - | 0.4233 |
1.6910 | 5800 | - | 0.4233 |
1.7055 | 5850 | - | 0.4233 |
1.7201 | 5900 | - | 0.4233 |
1.7347 | 5950 | - | 0.4233 |
1.7493 | 6000 | 0.0 | 0.4233 |
1.7638 | 6050 | - | 0.4234 |
1.7784 | 6100 | - | 0.4234 |
1.7930 | 6150 | - | 0.4234 |
1.8076 | 6200 | - | 0.4234 |
1.8222 | 6250 | - | 0.4234 |
1.8367 | 6300 | - | 0.4234 |
1.8513 | 6350 | - | 0.4234 |
1.8659 | 6400 | - | 0.4234 |
1.8805 | 6450 | - | 0.4234 |
1.8950 | 6500 | 0.0 | 0.4234 |
1.9096 | 6550 | - | 0.4234 |
1.9242 | 6600 | - | 0.4234 |
1.9388 | 6650 | - | 0.4234 |
1.9534 | 6700 | - | 0.4234 |
1.9679 | 6750 | - | 0.4234 |
1.9825 | 6800 | - | 0.4234 |
1.9971 | 6850 | - | 0.4234 |
2.0 | 6860 | - | 0.4234 |
2.0117 | 6900 | - | 0.4234 |
2.0262 | 6950 | - | 0.4234 |
2.0408 | 7000 | 0.0 | 0.4234 |
2.0554 | 7050 | - | 0.4234 |
2.0700 | 7100 | - | 0.4234 |
2.0845 | 7150 | - | 0.4234 |
2.0991 | 7200 | - | 0.4234 |
2.1137 | 7250 | - | 0.4234 |
2.1283 | 7300 | - | 0.4234 |
2.1429 | 7350 | - | 0.4234 |
2.1574 | 7400 | - | 0.4234 |
2.1720 | 7450 | - | 0.4234 |
2.1866 | 7500 | 0.0 | 0.4234 |
2.2012 | 7550 | - | 0.4234 |
2.2157 | 7600 | - | 0.4234 |
2.2303 | 7650 | - | 0.4234 |
2.2449 | 7700 | - | 0.4234 |
2.2595 | 7750 | - | 0.4234 |
2.2741 | 7800 | - | 0.4234 |
2.2886 | 7850 | - | 0.4234 |
2.3032 | 7900 | - | 0.4234 |
2.3178 | 7950 | - | 0.4234 |
2.3324 | 8000 | 0.0 | 0.4234 |
2.3469 | 8050 | - | 0.4234 |
2.3615 | 8100 | - | 0.4234 |
2.3761 | 8150 | - | 0.4234 |
2.3907 | 8200 | - | 0.4234 |
2.4052 | 8250 | - | 0.4234 |
2.4198 | 8300 | - | 0.4234 |
2.4344 | 8350 | - | 0.4234 |
2.4490 | 8400 | - | 0.4234 |
2.4636 | 8450 | - | 0.4234 |
2.4781 | 8500 | 0.0 | 0.4234 |
2.4927 | 8550 | - | 0.4234 |
2.5073 | 8600 | - | 0.4234 |
2.5219 | 8650 | - | 0.4234 |
2.5364 | 8700 | - | 0.4234 |
2.5510 | 8750 | - | 0.4234 |
2.5656 | 8800 | - | 0.4234 |
2.5802 | 8850 | - | 0.4234 |
2.5948 | 8900 | - | 0.4234 |
2.6093 | 8950 | - | 0.4234 |
2.6239 | 9000 | 0.0 | 0.4234 |
2.6385 | 9050 | - | 0.4234 |
2.6531 | 9100 | - | 0.4234 |
2.6676 | 9150 | - | 0.4234 |
2.6822 | 9200 | - | 0.4234 |
2.6968 | 9250 | - | 0.4234 |
2.7114 | 9300 | - | 0.4234 |
2.7259 | 9350 | - | 0.4234 |
2.7405 | 9400 | - | 0.4234 |
2.7551 | 9450 | - | 0.4234 |
2.7697 | 9500 | 0.0 | 0.4234 |
2.7843 | 9550 | - | 0.4234 |
2.7988 | 9600 | - | 0.4234 |
2.8134 | 9650 | - | 0.4234 |
2.8280 | 9700 | - | 0.4234 |
2.8426 | 9750 | - | 0.4234 |
2.8571 | 9800 | - | 0.4234 |
2.8717 | 9850 | - | 0.4234 |
2.8863 | 9900 | - | 0.4234 |
2.9009 | 9950 | - | 0.4234 |
2.9155 | 10000 | 0.0 | 0.4234 |
2.9300 | 10050 | - | 0.4234 |
2.9446 | 10100 | - | 0.4234 |
2.9592 | 10150 | - | 0.4234 |
2.9738 | 10200 | - | 0.4234 |
2.9883 | 10250 | - | 0.4234 |
3.0 | 10290 | - | 0.4234 |
3.0029 | 10300 | - | 0.4234 |
3.0175 | 10350 | - | 0.4234 |
3.0321 | 10400 | - | 0.4234 |
3.0466 | 10450 | - | 0.4234 |
3.0612 | 10500 | 0.0 | 0.4234 |
3.0758 | 10550 | - | 0.4234 |
3.0904 | 10600 | - | 0.4234 |
3.1050 | 10650 | - | 0.4234 |
3.1195 | 10700 | - | 0.4234 |
3.1341 | 10750 | - | 0.4234 |
3.1487 | 10800 | - | 0.4234 |
3.1633 | 10850 | - | 0.4234 |
3.1778 | 10900 | - | 0.4234 |
3.1924 | 10950 | - | 0.4234 |
3.2070 | 11000 | 0.0 | 0.4234 |
3.2216 | 11050 | - | 0.4234 |
3.2362 | 11100 | - | 0.4234 |
3.2507 | 11150 | - | 0.4234 |
3.2653 | 11200 | - | 0.4234 |
3.2799 | 11250 | - | 0.4234 |
3.2945 | 11300 | - | 0.4234 |
3.3090 | 11350 | - | 0.4234 |
3.3236 | 11400 | - | 0.4234 |
3.3382 | 11450 | - | 0.4234 |
3.3528 | 11500 | 0.0 | 0.4234 |
3.3673 | 11550 | - | 0.4234 |
3.3819 | 11600 | - | 0.4234 |
3.3965 | 11650 | - | 0.4234 |
3.4111 | 11700 | - | 0.4234 |
3.4257 | 11750 | - | 0.4234 |
3.4402 | 11800 | - | 0.4234 |
3.4548 | 11850 | - | 0.4235 |
3.4694 | 11900 | - | 0.4235 |
3.4840 | 11950 | - | 0.4235 |
3.4985 | 12000 | 0.0 | 0.4235 |
3.5131 | 12050 | - | 0.4235 |
3.5277 | 12100 | - | 0.4235 |
3.5423 | 12150 | - | 0.4235 |
3.5569 | 12200 | - | 0.4235 |
3.5714 | 12250 | - | 0.4235 |
3.5860 | 12300 | - | 0.4235 |
3.6006 | 12350 | - | 0.4235 |
3.6152 | 12400 | - | 0.4235 |
3.6297 | 12450 | - | 0.4235 |
3.6443 | 12500 | 0.0 | 0.4235 |
3.6589 | 12550 | - | 0.4235 |
3.6735 | 12600 | - | 0.4235 |
3.6880 | 12650 | - | 0.4235 |
3.7026 | 12700 | - | 0.4235 |
3.7172 | 12750 | - | 0.4235 |
3.7318 | 12800 | - | 0.4235 |
3.7464 | 12850 | - | 0.4235 |
3.7609 | 12900 | - | 0.4235 |
3.7755 | 12950 | - | 0.4235 |
3.7901 | 13000 | 0.0 | 0.4235 |
3.8047 | 13050 | - | 0.4235 |
3.8192 | 13100 | - | 0.4235 |
3.8338 | 13150 | - | 0.4235 |
3.8484 | 13200 | - | 0.4235 |
3.8630 | 13250 | - | 0.4235 |
3.8776 | 13300 | - | 0.4235 |
3.8921 | 13350 | - | 0.4235 |
3.9067 | 13400 | - | 0.4235 |
3.9213 | 13450 | - | 0.4235 |
3.9359 | 13500 | 0.0 | 0.4235 |
3.9504 | 13550 | - | 0.4235 |
3.9650 | 13600 | - | 0.4235 |
3.9796 | 13650 | - | 0.4235 |
3.9942 | 13700 | - | 0.4235 |
4.0 | 13720 | - | 0.4235 |
4.0087 | 13750 | - | 0.4235 |
4.0233 | 13800 | - | 0.4235 |
4.0379 | 13850 | - | 0.4235 |
4.0525 | 13900 | - | 0.4235 |
4.0671 | 13950 | - | 0.4235 |
4.0816 | 14000 | 0.0 | 0.4236 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.1.1
- Transformers: 4.44.2
- PyTorch: 2.4.1+cu121
- Accelerate: 0.34.2
- Datasets: 2.14.4
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 23
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for jeevanions/finetuned_arctic-embedd-l
Base model
Snowflake/snowflake-arctic-embed-lSpace using jeevanions/finetuned_arctic-embedd-l 1
Evaluation results
- Cosine Accuracy@1 on Unknownself-reported0.281
- Cosine Accuracy@3 on Unknownself-reported0.465
- Cosine Accuracy@5 on Unknownself-reported0.535
- Cosine Accuracy@10 on Unknownself-reported0.719
- Cosine Precision@1 on Unknownself-reported0.281
- Cosine Precision@3 on Unknownself-reported0.155
- Cosine Precision@5 on Unknownself-reported0.107
- Cosine Precision@10 on Unknownself-reported0.072
- Cosine Recall@1 on Unknownself-reported0.281
- Cosine Recall@3 on Unknownself-reported0.465