image_classification

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1918
  • Accuracy: 0.6062

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 20 1.6651 0.3187
No log 2.0 40 1.3900 0.475
No log 3.0 60 1.2950 0.4875
No log 4.0 80 1.2170 0.5813
No log 5.0 100 1.1709 0.5687
No log 6.0 120 1.2711 0.525
No log 7.0 140 1.1324 0.575
No log 8.0 160 1.2349 0.5437
No log 9.0 180 1.3844 0.5312
No log 10.0 200 1.2460 0.55
No log 11.0 220 1.2182 0.6125
No log 12.0 240 1.3365 0.5563
No log 13.0 260 1.2137 0.6125
No log 14.0 280 1.3335 0.575
No log 15.0 300 1.1078 0.625
No log 16.0 320 1.2962 0.6
No log 17.0 340 1.2558 0.6125
No log 18.0 360 1.3949 0.55
No log 19.0 380 1.3807 0.5687
No log 20.0 400 1.2734 0.6

Framework versions

  • Transformers 4.33.2
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.13.3
Downloads last month
192
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for jeffsabarman/image_classification

Finetuned
(1821)
this model

Evaluation results