Built with Axolotl

See axolotl config

axolotl version: 0.4.1

base_model: FourOhFour/Crispy_Crab_4B
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer

load_in_8bit: false
load_in_4bit: false
strict: false

hub_model_id: jeiku/personal4B
hub_strategy: "all_checkpoints"
push_dataset_to_hub:
hf_use_auth_token: true

datasets:
  - path: jeiku/Hypno_ChatML
    type: sharegpt
    conversation: chatml
  - path: jeiku/Soul_ChatML
    type: sharegpt
    conversation: chatml
  - path: jeiku/Theory_Chat
    type: sharegpt
    conversation: chatml
  - path: jeiku/Writing
    type: completion
    field: text

chat_template: chatml

shuffle_merged_datasets: true
val_set_size: 0.0025
output_dir: ./outputs/out

adapter:
lora_r:
lora_alpha:
lora_dropout:
lora_target_linear:

sequence_len: 8192
sample_packing: true
eval_sample_packing: false
pad_to_sequence_len: true

plugins:
  - axolotl.integrations.liger.LigerPlugin
liger_rope: true
liger_rms_norm: true
liger_swiglu: true
liger_fused_linear_cross_entropy: true

wandb_project: EXP4B
wandb_entity:
wandb_watch:
wandb_name: EXP4B
wandb_log_model:

gradient_accumulation_steps: 12
micro_batch_size: 2
num_epochs: 4
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.00001
weight_decay: 0.05

train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: true

gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint: 
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true

warmup_ratio: 0.1
evals_per_epoch: 2
eval_table_size:
eval_max_new_tokens: 128
saves_per_epoch: 1

debug:
deepspeed:
fsdp:
fsdp_config:

special_tokens:
  pad_token: <|finetune_right_pad_id|>

personal4B

This model is a fine-tuned version of FourOhFour/Crispy_Crab_4B on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.9273

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 2
  • gradient_accumulation_steps: 12
  • total_train_batch_size: 48
  • total_eval_batch_size: 4
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • num_epochs: 4

Training results

Training Loss Epoch Step Validation Loss
2.1634 0.8571 1 2.0454
2.0907 1.7143 2 1.9455
1.9539 2.5714 3 1.9296
1.9493 3.4286 4 1.9273

Framework versions

  • Transformers 4.46.0.dev0
  • Pytorch 2.4.1+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
8
Safetensors
Model size
4.51B params
Tensor type
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for jeiku/Personal_4B

Finetuned
jeiku/completion4B
Finetuned
(1)
this model
Quantizations
4 models