Model Card for controlkto
This model is a fine-tuned version of Delta-Vector/Control-8B-V1.1. It has been trained using TRL.
Quick start
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="jeiku/controlkto", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
Training procedure
This model was trained with KTO, a method introduced in KTO: Model Alignment as Prospect Theoretic Optimization.
Framework versions
- TRL: 0.12.1
- Transformers: 4.47.0
- Pytorch: 2.3.1+cu121
- Datasets: 3.1.0
- Tokenizers: 0.21.0
Citations
Cite KTO as:
@article{ethayarajh2024kto,
title = {{KTO: Model Alignment as Prospect Theoretic Optimization}},
author = {Kawin Ethayarajh and Winnie Xu and Niklas Muennighoff and Dan Jurafsky and Douwe Kiela},
year = 2024,
eprint = {arXiv:2402.01306},
}
Cite TRL as:
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
- Downloads last month
- 7
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for jeiku/controlkto
Base model
Delta-Vector/Control-8B-V1.1