See axolotl config
axolotl version: 0.4.1
base_model: microsoft/Phi-3.5-mini-instruct
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
load_in_8bit: false
load_in_4bit: false
strict: false
datasets:
- path: anthracite-org/stheno-filtered-v1.1
type: sharegpt
conversation: chatml
- path: anthracite-org/nopm_claude_writing_fixed
type: sharegpt
conversation: chatml
- path: Epiculous/SynthRP-Gens-v1.1-Filtered-n-Cleaned
type: sharegpt
conversation: chatml
- path: ResplendentAI/bluemoon
type: sharegpt
conversation: chatml
- path: openerotica/freedom-rp
type: sharegpt
conversation: chatml
- path: MinervaAI/Aesir-Preview
type: sharegpt
conversation: chatml
- path: jeiku/jeikutxt
type: completion
- path: ResplendentAI/Sissification_Hypno_1k
type: alpaca
- path: ResplendentAI/theory_of_mind_fixed_output
type: alpaca
- path: ResplendentAI/Synthetic_Soul_1k
type: alpaca
chat_template: chatml
val_set_size: 0.01
output_dir: ./outputs/out
adapter:
lora_r:
lora_alpha:
lora_dropout:
lora_target_linear:
sequence_len: 8192
# sequence_len: 32768
sample_packing: true
eval_sample_packing: false
pad_to_sequence_len: true
plugins:
- axolotl.integrations.liger.LigerPlugin
liger_rope: true
liger_rms_norm: true
liger_swiglu: true
liger_fused_linear_cross_entropy: true
wandb_project: phi
wandb_entity:
wandb_watch:
wandb_name: phi
wandb_log_model:
gradient_accumulation_steps: 32
micro_batch_size: 4
num_epochs: 2
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.00001
weight_decay: 0.05
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: true
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_ratio: 0.1
evals_per_epoch: 4
eval_table_size:
eval_max_new_tokens: 128
saves_per_epoch: 2
debug:
deepspeed: deepspeed_configs/zero3.json
fsdp:
fsdp_config:
special_tokens:
pad_token: <|finetune_right_pad_id|>
outputs/out
This model is a fine-tuned version of microsoft/Phi-3.5-mini-instruct on the None dataset. It achieves the following results on the evaluation set:
- Loss: 7.1048
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- gradient_accumulation_steps: 32
- total_train_batch_size: 256
- total_eval_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 8
- num_epochs: 2
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
15.986 | 0.0233 | 1 | 16.8119 |
9.6041 | 0.2567 | 11 | 9.1897 |
7.5864 | 0.5135 | 22 | 7.5221 |
7.2575 | 0.7702 | 33 | 7.2532 |
7.1368 | 1.0270 | 44 | 7.1665 |
7.078 | 1.2844 | 55 | 7.1249 |
7.0613 | 1.5417 | 66 | 7.1079 |
7.0599 | 1.7990 | 77 | 7.1048 |
Framework versions
- Transformers 4.45.0.dev0
- Pytorch 2.4.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1
- Downloads last month
- 6
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for jeiku/thisisbroken
Base model
microsoft/Phi-3.5-mini-instruct