Whisper Tiny Taiwanese (topline)

This model is a fine-tuned version of openai/whisper-tiny on the TAT ASR Aligned dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0448
  • Cer: 20.4492

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 64
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1362
  • training_steps: 13620
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Cer
0.6757 0.9985 681 0.6823 34.9394
0.5051 1.9971 1362 0.6048 25.3576
0.3472 2.9956 2043 0.5862 23.4704
0.2461 3.9941 2724 0.6068 22.2289
0.1633 4.9927 3405 0.6434 22.5768
0.1086 5.9912 4086 0.7158 21.8098
0.0723 6.9897 4767 0.7615 21.8697
0.0478 7.9883 5448 0.8106 21.8095
0.0333 8.9868 6129 0.8494 22.0310
0.0244 9.9853 6810 0.8936 21.9217
0.019 10.9839 7491 0.9116 21.9380
0.0124 11.9824 8172 0.9579 21.3454
0.0096 12.9809 8853 0.9779 21.6642
0.006 13.9795 9534 0.9902 21.4863
0.004 14.9780 10215 1.0026 21.0375
0.0021 15.9765 10896 1.0137 20.5766
0.0017 16.9751 11577 1.0258 20.7390
0.0015 17.9736 12258 1.0373 20.4630
0.0019 18.9721 12939 1.0412 20.5229
0.0013 19.9707 13620 1.0448 20.4492

Framework versions

  • Transformers 4.42.3
  • Pytorch 2.3.0+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
6
Safetensors
Model size
37.8M params
Tensor type
F32
·
Inference API
Unable to determine this model's library. Check the docs .

Model tree for jethrowang/whisper-tiny_tat_topline

Finetuned
(1300)
this model