Dogs-Breed-Image-Classification-V1

This model is a fine-tuned version of microsoft/resnet-101 on the Standford dogs dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4469
  • Accuracy: 0.8758

Model description

Link to the fine-tuned model using resnet-50

This model was trained using dataset from Kaggle - Standford dogs dataset

Quotes from the website: The Stanford Dogs dataset contains images of 120 breeds of dogs from around the world. This dataset has been built using images and annotation from ImageNet for the task of fine-grained image categorization. It was originally collected for fine-grain image categorization, a challenging problem as certain dog breeds have near identical features or differ in colour and age.

citation: Aditya Khosla, Nityananda Jayadevaprakash, Bangpeng Yao and Li Fei-Fei. Novel dataset for Fine-Grained Image Categorization. First Workshop on Fine-Grained Visual Categorization (FGVC), IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2011. [pdf] [poster] [BibTex]

Secondary: J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li and L. Fei-Fei, ImageNet: A Large-Scale Hierarchical Image Database. IEEE Computer Vision and Pattern Recognition (CVPR), 2009. [pdf] [BibTex]

Intended uses & limitations

This model is fined tune solely for classifiying 120 species of dogs.

Training and evaluation data

75% training data, 25% testing data.

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 309 18.7685 0.0091
18.7211 2.0 618 18.5975 0.0091
18.7211 3.0 927 17.4087 0.0091
15.4274 4.0 1236 11.8712 0.0091
10.3252 5.0 1545 6.6642 0.0091
10.3252 6.0 1854 5.2754 0.0112
6.2268 7.0 2163 4.8454 0.0158
6.2268 8.0 2472 4.7658 0.0140
4.9682 9.0 2781 4.6860 0.0234
4.7245 10.0 3090 4.6165 0.0316
4.7245 11.0 3399 4.5349 0.0446
4.5441 12.0 3708 4.4555 0.0623
4.3912 13.0 4017 4.3437 0.0862
4.3912 14.0 4326 4.2182 0.1330
4.2211 15.0 4635 4.0752 0.2153
4.2211 16.0 4944 3.9803 0.2599
3.9762 17.0 5253 3.7347 0.3596
3.69 18.0 5562 3.5493 0.4194
3.69 19.0 5871 3.3404 0.4813
3.3803 20.0 6180 3.1122 0.5600
3.3803 21.0 6489 2.8656 0.6101
3.0345 22.0 6798 2.6544 0.6462
2.6793 23.0 7107 2.4178 0.6647
2.6793 24.0 7416 2.1967 0.7121
2.3251 25.0 7725 2.0091 0.7203
1.9975 26.0 8034 1.8189 0.7464
1.9975 27.0 8343 1.6537 0.7519
1.7009 28.0 8652 1.4413 0.7880
1.7009 29.0 8961 1.3137 0.7968
1.4494 30.0 9270 1.2150 0.7929
1.2389 31.0 9579 1.1238 0.8041
1.2389 32.0 9888 1.0215 0.8208
1.0646 33.0 10197 0.9637 0.8190
0.9319 34.0 10506 0.8891 0.8299
0.9319 35.0 10815 0.8520 0.8330
0.8297 36.0 11124 0.8212 0.8400
0.8297 37.0 11433 0.7579 0.8415
0.7293 38.0 11742 0.7254 0.8454
0.6657 39.0 12051 0.7019 0.8457
0.6657 40.0 12360 0.6669 0.8527
0.6047 41.0 12669 0.6510 0.8530
0.6047 42.0 12978 0.6264 0.8545
0.557 43.0 13287 0.6275 0.8506
0.5126 44.0 13596 0.5947 0.8536
0.5126 45.0 13905 0.5860 0.8573
0.475 46.0 14214 0.5745 0.8545
0.4406 47.0 14523 0.5579 0.8600
0.4406 48.0 14832 0.5386 0.8621
0.4086 49.0 15141 0.5346 0.8624
0.4086 50.0 15450 0.5200 0.8612
0.3882 51.0 15759 0.5233 0.8612
0.3646 52.0 16068 0.5148 0.8640
0.3646 53.0 16377 0.5078 0.8679
0.3386 54.0 16686 0.5067 0.8646
0.3386 55.0 16995 0.4976 0.8673
0.3208 56.0 17304 0.4934 0.8682
0.3039 57.0 17613 0.4849 0.8688
0.3039 58.0 17922 0.4930 0.8691
0.2915 59.0 18231 0.4867 0.8655
0.2784 60.0 18540 0.4832 0.8679
0.2784 61.0 18849 0.4785 0.8670
0.2597 62.0 19158 0.4753 0.8685
0.2597 63.0 19467 0.4701 0.8712
0.2488 64.0 19776 0.4766 0.8697
0.2426 65.0 20085 0.4726 0.8700
0.2426 66.0 20394 0.4670 0.8694
0.2261 67.0 20703 0.4624 0.8722
0.2252 68.0 21012 0.4631 0.8718
0.2252 69.0 21321 0.4702 0.8670
0.2116 70.0 21630 0.4629 0.8715
0.2116 71.0 21939 0.4650 0.8685
0.2032 72.0 22248 0.4670 0.8673
0.2035 73.0 22557 0.4565 0.8670
0.2035 74.0 22866 0.4550 0.8697
0.19 75.0 23175 0.4544 0.8706
0.19 76.0 23484 0.4483 0.8670
0.1833 77.0 23793 0.4650 0.8694
0.184 78.0 24102 0.4604 0.8709
0.184 79.0 24411 0.4484 0.8697
0.1728 80.0 24720 0.4469 0.8758
0.1688 81.0 25029 0.4536 0.8676
0.1688 82.0 25338 0.4450 0.8709
0.1674 83.0 25647 0.4530 0.8691
0.1674 84.0 25956 0.4532 0.8725
0.1632 85.0 26265 0.4495 0.8718
0.1605 86.0 26574 0.4440 0.8673
0.1605 87.0 26883 0.4504 0.8731
0.1586 88.0 27192 0.4551 0.8667
0.1558 89.0 27501 0.4498 0.8670
0.1558 90.0 27810 0.4516 0.8718
0.1587 91.0 28119 0.4450 0.8725
0.1587 92.0 28428 0.4435 0.8706
0.1505 93.0 28737 0.4459 0.8722
0.1492 94.0 29046 0.4578 0.8673
0.1492 95.0 29355 0.4499 0.8725
0.1459 96.0 29664 0.4494 0.8703
0.1459 97.0 29973 0.4533 0.8697
0.1481 98.0 30282 0.4524 0.8652
0.1477 99.0 30591 0.4496 0.8715
0.1477 100.0 30900 0.4523 0.8661

Framework versions

  • Transformers 4.37.2
  • Pytorch 2.3.0
  • Datasets 2.15.0
  • Tokenizers 0.15.1
Downloads last month
68
Safetensors
Model size
42.9M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for jhoppanne/Dogs-Breed-Image-Classification-V1

Finetuned
(8)
this model

Evaluation results