vit-large

This model is a fine-tuned version of google/vit-large-patch16-224-in21k on the cifar100 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3301
  • Accuracy: 0.9309

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 64
  • eval_batch_size: 256
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.2884 1.0 665 0.8752 0.8834
0.7958 2.0 1330 0.4724 0.9142
0.743 3.0 1995 0.3750 0.9207
0.6935 4.0 2660 0.3198 0.9236
0.6159 5.0 3325 0.2945 0.9289
0.4423 6.0 3990 0.2876 0.925
0.5506 7.0 4655 0.2617 0.9302
0.5673 8.0 5320 0.2576 0.9324
0.4613 9.0 5985 0.2586 0.9311
0.4179 10.0 6650 0.2555 0.9285
0.4438 11.0 7315 0.2554 0.9316
0.4869 12.0 7980 0.2564 0.9298
0.4289 13.0 8645 0.2713 0.9288
0.4003 14.0 9310 0.2617 0.932
0.3227 15.0 9975 0.2567 0.9335
0.386 16.0 10640 0.2571 0.931
0.3688 17.0 11305 0.2576 0.9346
0.3985 18.0 11970 0.2532 0.9356
0.3213 19.0 12635 0.2728 0.9321
0.3046 20.0 13300 0.2702 0.9334
0.3676 21.0 13965 0.2700 0.9319
0.3329 22.0 14630 0.2720 0.9333
0.4089 23.0 15295 0.2764 0.9325
0.3196 24.0 15960 0.2735 0.9305
0.2982 25.0 16625 0.2771 0.9312
0.1884 26.0 17290 0.2943 0.9304
0.3624 27.0 17955 0.2866 0.9316
0.2957 28.0 18620 0.2708 0.932
0.3013 29.0 19285 0.2881 0.932
0.2811 30.0 19950 0.2940 0.9304
0.2031 31.0 20615 0.2802 0.9335
0.3268 32.0 21280 0.2803 0.9312
0.218 33.0 21945 0.2883 0.9307
0.217 34.0 22610 0.2866 0.9356
0.2032 35.0 23275 0.2905 0.9317
0.2539 36.0 23940 0.2818 0.9313
0.2104 37.0 24605 0.2907 0.9329
0.264 38.0 25270 0.3030 0.9298
0.3343 39.0 25935 0.3030 0.9299
0.2252 40.0 26600 0.2960 0.9313
0.2453 41.0 27265 0.2977 0.9302
0.2467 42.0 27930 0.3034 0.9293
0.2208 43.0 28595 0.3022 0.9316
0.1808 44.0 29260 0.3067 0.9304
0.2477 45.0 29925 0.3073 0.9289
0.2059 46.0 30590 0.3010 0.931
0.2156 47.0 31255 0.2920 0.9318
0.2719 48.0 31920 0.3057 0.9311
0.2156 49.0 32585 0.3127 0.9292
0.2562 50.0 33250 0.3115 0.93
0.1847 51.0 33915 0.3058 0.9311
0.2453 52.0 34580 0.3180 0.9308
0.2763 53.0 35245 0.3076 0.932
0.1876 54.0 35910 0.3097 0.9318
0.1774 55.0 36575 0.3105 0.9321
0.2011 56.0 37240 0.3108 0.9337
0.2142 57.0 37905 0.3191 0.9312
0.1931 58.0 38570 0.3219 0.9299
0.2328 59.0 39235 0.3155 0.9316
0.145 60.0 39900 0.3216 0.9295
0.2804 61.0 40565 0.3253 0.9298
0.1696 62.0 41230 0.3086 0.9315
0.2194 63.0 41895 0.3170 0.9313
0.2297 64.0 42560 0.3231 0.9293
0.2108 65.0 43225 0.3161 0.9313
0.1696 66.0 43890 0.3269 0.929
0.1946 67.0 44555 0.3307 0.9302
0.1492 68.0 45220 0.3248 0.9296
0.223 69.0 45885 0.3316 0.9293
0.1738 70.0 46550 0.3248 0.9295
0.2251 71.0 47215 0.3297 0.9305
0.1518 72.0 47880 0.3322 0.9311
0.1914 73.0 48545 0.3263 0.931
0.2097 74.0 49210 0.3367 0.9294
0.1423 75.0 49875 0.3286 0.9299
0.1953 76.0 50540 0.3337 0.9307
0.1599 77.0 51205 0.3295 0.9313
0.2077 78.0 51870 0.3285 0.9312
0.2053 79.0 52535 0.3278 0.9309
0.1846 80.0 53200 0.3291 0.9307
0.1909 81.0 53865 0.3417 0.9291
0.1971 82.0 54530 0.3323 0.9289
0.1739 83.0 55195 0.3266 0.9323
0.1537 84.0 55860 0.3313 0.9294
0.1706 85.0 56525 0.3395 0.928
0.199 86.0 57190 0.3344 0.9303
0.2013 87.0 57855 0.3360 0.9294
0.1495 88.0 58520 0.3371 0.9307
0.1042 89.0 59185 0.3302 0.9316
0.1681 90.0 59850 0.3304 0.9295
0.1802 91.0 60515 0.3351 0.9298
0.268 92.0 61180 0.3332 0.9305
0.1807 93.0 61845 0.3300 0.9307
0.1855 94.0 62510 0.3315 0.9303
0.1747 95.0 63175 0.3324 0.9295
0.1783 96.0 63840 0.3313 0.9315
0.1256 97.0 64505 0.3327 0.9308
0.0984 98.0 65170 0.3291 0.9317
0.1525 99.0 65835 0.3307 0.9311
0.1471 100.0 66500 0.3301 0.9309

Framework versions

  • Transformers 4.39.3
  • Pytorch 2.2.2+cu118
  • Datasets 2.18.0
  • Tokenizers 0.15.2
Downloads last month
7
Safetensors
Model size
303M params
Tensor type
F32
·
Inference Examples
Unable to determine this model's library. Check the docs .

Model tree for jialicheng/cifar100-vit-large

Finetuned
(33)
this model