File size: 2,551 Bytes
de8c10a 95c2b86 de8c10a 95c2b86 de8c10a 95c2b86 de8c10a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 |
---
license: apache-2.0
language: ga
tags:
- generated_from_trainer
- irish
datasets:
- wikiann
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: electra-base-irish-cased-discriminator-v1-finetuned-ner
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: wikiann
type: wikiann
args: ga
metrics:
- name: Precision
type: precision
value: 0.5413922859830668
- name: Recall
type: recall
value: 0.5161434977578475
- name: F1
type: f1
value: 0.5284664830119375
- name: Accuracy
type: accuracy
value: 0.8419817960026273
widget:
- text: "Saolaíodh Pádraic Ó Conaire i nGaillimh sa bhliain 1882."
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# electra-base-irish-cased-discriminator-v1-finetuned-ner
This model is a fine-tuned version of [DCU-NLP/electra-base-irish-cased-generator-v1](https://huggingface.co/DCU-NLP/electra-base-irish-cased-generator-v1) on the wikiann dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6654
- Precision: 0.5414
- Recall: 0.5161
- F1: 0.5285
- Accuracy: 0.8420
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 63 | 1.3231 | 0.1046 | 0.0417 | 0.0596 | 0.5449 |
| No log | 2.0 | 126 | 0.9710 | 0.3879 | 0.3359 | 0.3600 | 0.7486 |
| No log | 3.0 | 189 | 0.7723 | 0.4713 | 0.4457 | 0.4582 | 0.8152 |
| No log | 4.0 | 252 | 0.6892 | 0.5257 | 0.4910 | 0.5078 | 0.8347 |
| No log | 5.0 | 315 | 0.6654 | 0.5414 | 0.5161 | 0.5285 | 0.8420 |
### Framework versions
- Transformers 4.12.5
- Pytorch 1.10.0+cu111
- Datasets 1.16.1
- Tokenizers 0.10.3
|