resnet101-base_tobacco-cnn_tobacco3482_og_simkd
This model is a fine-tuned version of bdpc/resnet101-base_tobacco on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.1263
- Accuracy: 0.295
- Brier Loss: 0.7485
- Nll: 6.2362
- F1 Micro: 0.295
- F1 Macro: 0.1126
- Ece: 0.2177
- Aurc: 0.4648
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Brier Loss | Nll | F1 Micro | F1 Macro | Ece | Aurc |
---|---|---|---|---|---|---|---|---|---|---|
No log | 1.0 | 7 | 0.1887 | 0.18 | 0.8839 | 8.4886 | 0.18 | 0.0305 | 0.2321 | 0.8333 |
No log | 2.0 | 14 | 0.1901 | 0.18 | 0.8775 | 6.8406 | 0.18 | 0.0305 | 0.2593 | 0.8187 |
No log | 3.0 | 21 | 0.2085 | 0.28 | 0.9045 | 7.0658 | 0.28 | 0.1005 | 0.3168 | 0.6083 |
No log | 4.0 | 28 | 0.2493 | 0.155 | 0.9936 | 8.0153 | 0.155 | 0.0300 | 0.3996 | 0.6329 |
No log | 5.0 | 35 | 0.2952 | 0.16 | 1.0253 | 8.3946 | 0.16 | 0.0355 | 0.4181 | 0.6026 |
No log | 6.0 | 42 | 0.2344 | 0.195 | 0.9022 | 7.0548 | 0.195 | 0.0485 | 0.3118 | 0.8445 |
No log | 7.0 | 49 | 0.1665 | 0.18 | 0.9004 | 6.7765 | 0.18 | 0.0310 | 0.2888 | 0.7617 |
No log | 8.0 | 56 | 0.1696 | 0.18 | 0.9279 | 9.0648 | 0.18 | 0.0309 | 0.3021 | 0.7025 |
No log | 9.0 | 63 | 0.1715 | 0.18 | 0.9330 | 9.0774 | 0.18 | 0.0305 | 0.2992 | 0.7525 |
No log | 10.0 | 70 | 0.1369 | 0.285 | 0.8092 | 6.9372 | 0.285 | 0.1134 | 0.2993 | 0.4899 |
No log | 11.0 | 77 | 0.1584 | 0.18 | 0.8953 | 8.9899 | 0.18 | 0.0310 | 0.2666 | 0.7495 |
No log | 12.0 | 84 | 0.1690 | 0.18 | 0.8896 | 8.9605 | 0.18 | 0.0310 | 0.2593 | 0.7452 |
No log | 13.0 | 91 | 0.1636 | 0.18 | 0.8848 | 8.9907 | 0.18 | 0.0310 | 0.2661 | 0.7474 |
No log | 14.0 | 98 | 0.1685 | 0.18 | 0.8815 | 8.9991 | 0.18 | 0.0309 | 0.2676 | 0.7750 |
No log | 15.0 | 105 | 0.1678 | 0.18 | 0.8807 | 8.9352 | 0.18 | 0.0305 | 0.2658 | 0.7448 |
No log | 16.0 | 112 | 0.1599 | 0.18 | 0.8848 | 9.0210 | 0.18 | 0.0309 | 0.2707 | 0.7742 |
No log | 17.0 | 119 | 0.1553 | 0.18 | 0.8559 | 7.2132 | 0.18 | 0.0305 | 0.2569 | 0.7479 |
No log | 18.0 | 126 | 0.1620 | 0.18 | 0.8728 | 8.8826 | 0.18 | 0.0308 | 0.2472 | 0.7289 |
No log | 19.0 | 133 | 0.1631 | 0.18 | 0.8600 | 8.8681 | 0.18 | 0.0305 | 0.2689 | 0.7046 |
No log | 20.0 | 140 | 0.1616 | 0.18 | 0.8702 | 8.8768 | 0.18 | 0.0305 | 0.2532 | 0.7489 |
No log | 21.0 | 147 | 0.1521 | 0.18 | 0.8505 | 6.9939 | 0.18 | 0.0310 | 0.2687 | 0.7479 |
No log | 22.0 | 154 | 0.1290 | 0.285 | 0.7742 | 6.8763 | 0.285 | 0.1123 | 0.2907 | 0.4899 |
No log | 23.0 | 161 | 0.1256 | 0.305 | 0.7453 | 6.2659 | 0.305 | 0.1190 | 0.2133 | 0.4457 |
No log | 24.0 | 168 | 0.1257 | 0.305 | 0.7527 | 6.7983 | 0.305 | 0.1192 | 0.2483 | 0.4694 |
No log | 25.0 | 175 | 0.1256 | 0.295 | 0.7483 | 6.7540 | 0.295 | 0.1106 | 0.2233 | 0.4632 |
No log | 26.0 | 182 | 0.1277 | 0.3 | 0.7590 | 6.6632 | 0.3 | 0.1214 | 0.2641 | 0.4563 |
No log | 27.0 | 189 | 0.1644 | 0.18 | 0.8539 | 8.7216 | 0.18 | 0.0306 | 0.2483 | 0.7170 |
No log | 28.0 | 196 | 0.1268 | 0.305 | 0.7494 | 6.5633 | 0.305 | 0.1146 | 0.2379 | 0.4509 |
No log | 29.0 | 203 | 0.1246 | 0.305 | 0.7376 | 6.2718 | 0.305 | 0.1158 | 0.2319 | 0.4326 |
No log | 30.0 | 210 | 0.1249 | 0.3 | 0.7428 | 6.5246 | 0.3 | 0.1138 | 0.2463 | 0.4449 |
No log | 31.0 | 217 | 0.1284 | 0.295 | 0.7474 | 6.4668 | 0.295 | 0.1116 | 0.2566 | 0.4550 |
No log | 32.0 | 224 | 0.1715 | 0.18 | 0.8599 | 8.5902 | 0.18 | 0.0310 | 0.2413 | 0.7447 |
No log | 33.0 | 231 | 0.1566 | 0.18 | 0.8495 | 7.4352 | 0.18 | 0.0308 | 0.2624 | 0.7110 |
No log | 34.0 | 238 | 0.1370 | 0.275 | 0.7990 | 6.5052 | 0.275 | 0.1096 | 0.2760 | 0.5186 |
No log | 35.0 | 245 | 0.1289 | 0.3 | 0.7569 | 6.4685 | 0.3 | 0.1212 | 0.2643 | 0.4524 |
No log | 36.0 | 252 | 0.1557 | 0.18 | 0.8493 | 6.8218 | 0.18 | 0.0305 | 0.2574 | 0.7401 |
No log | 37.0 | 259 | 0.1629 | 0.18 | 0.8558 | 8.5068 | 0.18 | 0.0310 | 0.2522 | 0.7466 |
No log | 38.0 | 266 | 0.1386 | 0.275 | 0.8117 | 6.4244 | 0.275 | 0.1053 | 0.2455 | 0.5912 |
No log | 39.0 | 273 | 0.1601 | 0.18 | 0.8508 | 8.3697 | 0.18 | 0.0305 | 0.2445 | 0.7048 |
No log | 40.0 | 280 | 0.1510 | 0.185 | 0.8428 | 6.8710 | 0.185 | 0.0369 | 0.2517 | 0.7155 |
No log | 41.0 | 287 | 0.1315 | 0.29 | 0.7675 | 6.1897 | 0.29 | 0.1167 | 0.2708 | 0.4594 |
No log | 42.0 | 294 | 0.1235 | 0.3 | 0.7405 | 6.1762 | 0.3 | 0.1158 | 0.2338 | 0.4496 |
No log | 43.0 | 301 | 0.1250 | 0.295 | 0.7456 | 6.3789 | 0.295 | 0.1174 | 0.2524 | 0.4548 |
No log | 44.0 | 308 | 0.1249 | 0.285 | 0.7440 | 6.3862 | 0.285 | 0.1097 | 0.2405 | 0.4680 |
No log | 45.0 | 315 | 0.1245 | 0.29 | 0.7428 | 6.4641 | 0.29 | 0.1117 | 0.2403 | 0.4623 |
No log | 46.0 | 322 | 0.1245 | 0.295 | 0.7440 | 6.5208 | 0.295 | 0.1149 | 0.2385 | 0.4610 |
No log | 47.0 | 329 | 0.1250 | 0.29 | 0.7464 | 6.2221 | 0.29 | 0.1117 | 0.2332 | 0.4674 |
No log | 48.0 | 336 | 0.1263 | 0.295 | 0.7458 | 6.3085 | 0.295 | 0.1126 | 0.2375 | 0.4670 |
No log | 49.0 | 343 | 0.1252 | 0.29 | 0.7469 | 6.0647 | 0.29 | 0.1117 | 0.2410 | 0.4679 |
No log | 50.0 | 350 | 0.1263 | 0.295 | 0.7485 | 6.2362 | 0.295 | 0.1126 | 0.2177 | 0.4648 |
Framework versions
- Transformers 4.36.0.dev0
- Pytorch 2.2.0.dev20231112+cu118
- Datasets 2.14.5
- Tokenizers 0.14.1
- Downloads last month
- 40
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.