wav2vec2-common_voice-tr-demo

This model is a fine-tuned version of facebook/wav2vec2-large-xlsr-53 on the COMMON_VOICE - TR dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3920
  • Wer: 0.3511

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 15.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
No log 0.92 100 3.5898 1.0
No log 1.83 200 3.0073 0.9999
No log 2.75 300 0.9230 0.7813
No log 3.67 400 0.5698 0.6135
3.1746 4.59 500 0.5274 0.5653
3.1746 5.5 600 0.4778 0.5123
3.1746 6.42 700 0.4359 0.4725
3.1746 7.34 800 0.4289 0.4485
3.1746 8.26 900 0.4121 0.4288
0.2282 9.17 1000 0.4249 0.4034
0.2282 10.09 1100 0.4106 0.3976
0.2282 11.01 1200 0.4099 0.3935
0.2282 11.93 1300 0.3970 0.3771
0.2282 12.84 1400 0.4037 0.3726
0.1043 13.76 1500 0.3953 0.3636
0.1043 14.68 1600 0.3917 0.3532

Framework versions

  • Transformers 4.27.4
  • Pytorch 2.0.0+cu117
  • Datasets 2.10.1
  • Tokenizers 0.13.2
Downloads last month
6
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train joshuafc/wav2vec2-common_voice-tr-demo

Evaluation results