BGE base Financial Matryoshka
This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-base-en-v1.5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("joshuapb/fine-tuned-matryoshka-500")
# Run inference
sentences = [
'Revision stage: Edit the output to correct content unsupported by evidence while preserving the original content as much as possible. Initialize the revised text $y=x$.\n\n(1) Per $(q_i, e_{ij})$, an agreement model (via few-shot prompting + CoT, $(y, q, e) \\to {0,1}$) checks whether the evidence $e_i$ disagrees with the current revised text $y$.\n(2) Only if a disagreement is detect, the edit model (via few-shot prompting + CoT, $(y, q, e) \\to \\text{ new }y$) outputs a new version of $y$ that aims to agree with evidence $e_{ij}$ while otherwise minimally altering $y$.\n(3) Finally only a limited number $M=5$ of evidence goes into the attribution report $A$.\n\n\n\n\nFig. 12. Illustration of RARR (Retrofit Attribution using Research and Revision). (Image source: Gao et al. 2022)\nWhen evaluating the revised text $y$, both attribution and preservation metrics matter.',
'What mechanisms does the editing algorithm employ to maintain fidelity to the source material while simultaneously ensuring alignment with the supporting evidence?',
'What is the impact of constraining the dataset to a maximum of $M=5$ instances on the accuracy and reliability of the attribution report $A$ when analyzing AI-generated content?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Dataset:
dim_768
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.8802 |
cosine_accuracy@3 | 0.9688 |
cosine_accuracy@5 | 0.9896 |
cosine_accuracy@10 | 1.0 |
cosine_precision@1 | 0.8802 |
cosine_precision@3 | 0.3229 |
cosine_precision@5 | 0.1979 |
cosine_precision@10 | 0.1 |
cosine_recall@1 | 0.8802 |
cosine_recall@3 | 0.9688 |
cosine_recall@5 | 0.9896 |
cosine_recall@10 | 1.0 |
cosine_ndcg@10 | 0.9477 |
cosine_mrr@10 | 0.9302 |
cosine_map@100 | 0.9302 |
Information Retrieval
- Dataset:
dim_512
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.875 |
cosine_accuracy@3 | 0.9688 |
cosine_accuracy@5 | 0.9948 |
cosine_accuracy@10 | 1.0 |
cosine_precision@1 | 0.875 |
cosine_precision@3 | 0.3229 |
cosine_precision@5 | 0.199 |
cosine_precision@10 | 0.1 |
cosine_recall@1 | 0.875 |
cosine_recall@3 | 0.9688 |
cosine_recall@5 | 0.9948 |
cosine_recall@10 | 1.0 |
cosine_ndcg@10 | 0.946 |
cosine_mrr@10 | 0.9277 |
cosine_map@100 | 0.9277 |
Information Retrieval
- Dataset:
dim_256
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.8802 |
cosine_accuracy@3 | 0.9688 |
cosine_accuracy@5 | 0.9948 |
cosine_accuracy@10 | 1.0 |
cosine_precision@1 | 0.8802 |
cosine_precision@3 | 0.3229 |
cosine_precision@5 | 0.199 |
cosine_precision@10 | 0.1 |
cosine_recall@1 | 0.8802 |
cosine_recall@3 | 0.9688 |
cosine_recall@5 | 0.9948 |
cosine_recall@10 | 1.0 |
cosine_ndcg@10 | 0.9458 |
cosine_mrr@10 | 0.9277 |
cosine_map@100 | 0.9277 |
Information Retrieval
- Dataset:
dim_128
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.8698 |
cosine_accuracy@3 | 0.9844 |
cosine_accuracy@5 | 0.9896 |
cosine_accuracy@10 | 0.9948 |
cosine_precision@1 | 0.8698 |
cosine_precision@3 | 0.3281 |
cosine_precision@5 | 0.1979 |
cosine_precision@10 | 0.0995 |
cosine_recall@1 | 0.8698 |
cosine_recall@3 | 0.9844 |
cosine_recall@5 | 0.9896 |
cosine_recall@10 | 0.9948 |
cosine_ndcg@10 | 0.944 |
cosine_mrr@10 | 0.9265 |
cosine_map@100 | 0.9269 |
Information Retrieval
- Dataset:
dim_64
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.8542 |
cosine_accuracy@3 | 0.9844 |
cosine_accuracy@5 | 0.9948 |
cosine_accuracy@10 | 0.9948 |
cosine_precision@1 | 0.8542 |
cosine_precision@3 | 0.3281 |
cosine_precision@5 | 0.199 |
cosine_precision@10 | 0.0995 |
cosine_recall@1 | 0.8542 |
cosine_recall@3 | 0.9844 |
cosine_recall@5 | 0.9948 |
cosine_recall@10 | 0.9948 |
cosine_ndcg@10 | 0.9381 |
cosine_mrr@10 | 0.9184 |
cosine_map@100 | 0.9186 |
Training Details
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epochper_device_eval_batch_size
: 16learning_rate
: 2e-05num_train_epochs
: 5lr_scheduler_type
: cosinewarmup_ratio
: 0.1load_best_model_at_end
: True
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: epochprediction_loss_only
: Trueper_device_train_batch_size
: 8per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 5max_steps
: -1lr_scheduler_type
: cosinelr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falsebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 |
---|---|---|---|---|---|---|---|
0.0794 | 5 | 5.4149 | - | - | - | - | - |
0.1587 | 10 | 4.8587 | - | - | - | - | - |
0.2381 | 15 | 3.9711 | - | - | - | - | - |
0.3175 | 20 | 3.4853 | - | - | - | - | - |
0.3968 | 25 | 3.6227 | - | - | - | - | - |
0.4762 | 30 | 3.3359 | - | - | - | - | - |
0.5556 | 35 | 2.0868 | - | - | - | - | - |
0.6349 | 40 | 2.256 | - | - | - | - | - |
0.7143 | 45 | 2.2958 | - | - | - | - | - |
0.7937 | 50 | 1.7128 | - | - | - | - | - |
0.8730 | 55 | 2.029 | - | - | - | - | - |
0.9524 | 60 | 1.9104 | - | - | - | - | - |
1.0 | 63 | - | 0.8950 | 0.9042 | 0.9039 | 0.8640 | 0.8989 |
1.0317 | 65 | 2.5929 | - | - | - | - | - |
1.1111 | 70 | 1.4257 | - | - | - | - | - |
1.1905 | 75 | 1.9956 | - | - | - | - | - |
1.2698 | 80 | 1.5845 | - | - | - | - | - |
1.3492 | 85 | 1.7383 | - | - | - | - | - |
1.4286 | 90 | 1.4657 | - | - | - | - | - |
1.5079 | 95 | 1.8461 | - | - | - | - | - |
1.5873 | 100 | 1.8531 | - | - | - | - | - |
1.6667 | 105 | 1.6504 | - | - | - | - | - |
1.7460 | 110 | 2.7636 | - | - | - | - | - |
1.8254 | 115 | 0.7195 | - | - | - | - | - |
1.9048 | 120 | 1.2494 | - | - | - | - | - |
1.9841 | 125 | 1.7331 | - | - | - | - | - |
2.0 | 126 | - | 0.9170 | 0.9340 | 0.9167 | 0.9013 | 0.9179 |
2.0635 | 130 | 1.1102 | - | - | - | - | - |
2.1429 | 135 | 1.8586 | - | - | - | - | - |
2.2222 | 140 | 1.4211 | - | - | - | - | - |
2.3016 | 145 | 1.9531 | - | - | - | - | - |
2.3810 | 150 | 1.9516 | - | - | - | - | - |
2.4603 | 155 | 2.1174 | - | - | - | - | - |
2.5397 | 160 | 1.7883 | - | - | - | - | - |
2.6190 | 165 | 1.4537 | - | - | - | - | - |
2.6984 | 170 | 1.3927 | - | - | - | - | - |
2.7778 | 175 | 1.2559 | - | - | - | - | - |
2.8571 | 180 | 1.8748 | - | - | - | - | - |
2.9365 | 185 | 0.7509 | - | - | - | - | - |
3.0 | 189 | - | 0.9312 | 0.9244 | 0.9241 | 0.9199 | 0.9349 |
3.0159 | 190 | 0.947 | - | - | - | - | - |
3.0952 | 195 | 1.9463 | - | - | - | - | - |
3.1746 | 200 | 1.2077 | - | - | - | - | - |
3.2540 | 205 | 0.7721 | - | - | - | - | - |
3.3333 | 210 | 1.5633 | - | - | - | - | - |
3.4127 | 215 | 1.5042 | - | - | - | - | - |
3.4921 | 220 | 1.1531 | - | - | - | - | - |
3.5714 | 225 | 1.2408 | - | - | - | - | - |
3.6508 | 230 | 0.8085 | - | - | - | - | - |
3.7302 | 235 | 1.1195 | - | - | - | - | - |
3.8095 | 240 | 1.1843 | - | - | - | - | - |
3.8889 | 245 | 0.7176 | - | - | - | - | - |
3.9683 | 250 | 1.1715 | - | - | - | - | - |
4.0 | 252 | - | 0.9244 | 0.9287 | 0.9251 | 0.9199 | 0.9300 |
4.0476 | 255 | 1.3187 | - | - | - | - | - |
4.1270 | 260 | 0.2891 | - | - | - | - | - |
4.2063 | 265 | 1.5887 | - | - | - | - | - |
4.2857 | 270 | 1.1227 | - | - | - | - | - |
4.3651 | 275 | 1.5385 | - | - | - | - | - |
4.4444 | 280 | 0.4732 | - | - | - | - | - |
4.5238 | 285 | 1.2039 | - | - | - | - | - |
4.6032 | 290 | 1.0755 | - | - | - | - | - |
4.6825 | 295 | 1.5345 | - | - | - | - | - |
4.7619 | 300 | 1.4255 | - | - | - | - | - |
4.8413 | 305 | 1.7436 | - | - | - | - | - |
4.9206 | 310 | 0.9408 | - | - | - | - | - |
5.0 | 315 | 0.7724 | 0.9269 | 0.9277 | 0.9277 | 0.9186 | 0.9302 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.42.4
- PyTorch: 2.3.1+cu121
- Accelerate: 0.32.1
- Datasets: 2.21.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 2
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for joshuapb/fine-tuned-matryoshka-500
Base model
BAAI/bge-base-en-v1.5Evaluation results
- Cosine Accuracy@1 on dim 768self-reported0.880
- Cosine Accuracy@3 on dim 768self-reported0.969
- Cosine Accuracy@5 on dim 768self-reported0.990
- Cosine Accuracy@10 on dim 768self-reported1.000
- Cosine Precision@1 on dim 768self-reported0.880
- Cosine Precision@3 on dim 768self-reported0.323
- Cosine Precision@5 on dim 768self-reported0.198
- Cosine Precision@10 on dim 768self-reported0.100
- Cosine Recall@1 on dim 768self-reported0.880
- Cosine Recall@3 on dim 768self-reported0.969